Polychlorinated Biphenyls PCB 153 and PCB 126 Impair the Glutamate–Nitric Oxide–cGMP Pathway in Cerebellar Neurons in Culture by Different Mechanisms

2009 ◽  
Vol 16 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Marta Llansola ◽  
Blanca Piedrafita ◽  
Regina Rodrigo ◽  
Carmina Montoliu ◽  
Vicente Felipo
2001 ◽  
Vol 204 (10) ◽  
pp. 1719-1727 ◽  
Author(s):  
S. Imbrogno ◽  
L. De Iuri ◽  
R. Mazza ◽  
B. Tota

Nothing is known about the effects of nitric oxide (NO) on cardiac performance in fish. Using an in vitro working heart preparation that generates physiological values of output pressure, cardiac output and ventricular work and power, we assessed the effects of NO on the cardiac performance of the eel Anguilla anguilla. We examined basal cardiac performance (at constant preload, afterload and heart rate), the effects of cholinergic stimulation and the Frank-Starling response (preload-induced increases in cardiac output at constant afterload and heart rate). The NO synthase (NOS) inhibitors N(G)-monomethyl-l-arginine (l-NMMA) and l-N(5)(1-iminoethyl)ornithine (l-NIO), the guanylate cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ) and Triton X-100, a detergent that damages the endocardial endothelium, all increased stroke volume (V(S)) and stroke work (W(S)). In contrast, the endogenous NOS substrate l-arginine, tested before and after treatment with haemoglobin, the NO donor 3-morpholinosydnonimine, tested with and without the superoxide scavenger superoxide dismutase, and the stable cGMP analogue 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP) decreased V(S) and W(S). Acetylcholine chloride produced a biphasic effect. At nanomolar concentrations, in 34 % of the preparations, it induced a NO-cGMP-dependent positive inotropism that required the integrity of the endocardial endothelium. Pretreatment with Triton X-100 or with NO-cGMP pathway inhibitors (l-NMMA, l-NIO, N(G)-nitro-l-arginine methyl ester, Methylene Blue and ODQ) abolished the positive effect of acetylcholine. In contrast, at micromolar concentrations, acetylcholine produced a negative effect that involved neither the endocardial endothelium nor the NO-cGMP pathway. Pre-treatment with l-arginine (10(−)(6)mol l(−)(1)) was without effect, whereas l-NIO (10(−)(5)mol l(−)(1)) significantly reduced the Frank-Starling response. Taken together, these three experimental approaches provide evidence that NO modulates cardiac performance in the eel heart.


1995 ◽  
Vol 269 (1) ◽  
pp. H254-H261 ◽  
Author(s):  
J. S. Jin ◽  
R. C. Webb ◽  
L. G. D'Alecy

The hypothesis was tested that plasma from ischemic hindlimbs facilitates hypertension. Ischemia-induced hypertension was generated in rats by infrarenal aortic cross clamping for 5 h after which plasma was obtained from femoral vein blood. In vitro contractile activity of naive aortic rings incubated for 2 h in plasma collected from ischemic rats demonstrated reduced relaxation to acetylcholine and nitroglycerin. Methylene blue (10(-5) M) induced greater contraction in rings incubated in control vs. ischemic plasma, suggesting that endogenous guanylate cyclase activity is decreased by ischemic plasma. However, 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) relaxed equally strips incubated in ischemic or control plasma. Acetylcholine-induced nitrite release was significantly lower in ischemic vs. control plasma-incubated strips (8.6 +/- 2.7 vs. 28.2 +/- 2.3 ng/10 mg tissue wt, respectively). The impaired relaxation to acetylcholine in ischemic plasma-incubated rings was significantly increased by L-arginine but not by prior treatment of ischemic plasma with heating or superoxide dismutase and catalase. These findings suggest the impaired relaxation is mediated through inhibition of the nitric oxide-cGMP pathway. Prolonged blunting of vasodilation by ischemic plasma may therefore contribute to maintenance of a sustained vasoconstriction and ischemic hypertension.


2011 ◽  
Vol 64 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Vivek Khanna ◽  
Manish Jain ◽  
Manoj Kumar Barthwal ◽  
Diganta Kalita ◽  
Jeena Jyoti Boruah ◽  
...  

Life Sciences ◽  
1998 ◽  
Vol 62 (10) ◽  
pp. 897-903
Author(s):  
K. Noguchi ◽  
T. Shijuku ◽  
C. Nakasone ◽  
K. Takahashi ◽  
S. Higuchi ◽  
...  

2011 ◽  
Vol 89 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Mariana Alves de Sá Siqueira ◽  
Tatiana M.C. Brunini ◽  
Natália Rodrigues Pereira ◽  
Marcela Anjos Martins ◽  
Monique Bandeira Moss ◽  
...  

Nitric oxide (NO) production occurs through oxidation of the amino acid l-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated ( da Silva et al. 2005 ) an enhancement of the l-arginine–NO–cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet l-arginine–NO–cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.


Sign in / Sign up

Export Citation Format

Share Document