Inhibition of vascular nitric oxide-cGMP pathway by plasma from ischemic hindlimb of rats

1995 ◽  
Vol 269 (1) ◽  
pp. H254-H261 ◽  
Author(s):  
J. S. Jin ◽  
R. C. Webb ◽  
L. G. D'Alecy

The hypothesis was tested that plasma from ischemic hindlimbs facilitates hypertension. Ischemia-induced hypertension was generated in rats by infrarenal aortic cross clamping for 5 h after which plasma was obtained from femoral vein blood. In vitro contractile activity of naive aortic rings incubated for 2 h in plasma collected from ischemic rats demonstrated reduced relaxation to acetylcholine and nitroglycerin. Methylene blue (10(-5) M) induced greater contraction in rings incubated in control vs. ischemic plasma, suggesting that endogenous guanylate cyclase activity is decreased by ischemic plasma. However, 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) relaxed equally strips incubated in ischemic or control plasma. Acetylcholine-induced nitrite release was significantly lower in ischemic vs. control plasma-incubated strips (8.6 +/- 2.7 vs. 28.2 +/- 2.3 ng/10 mg tissue wt, respectively). The impaired relaxation to acetylcholine in ischemic plasma-incubated rings was significantly increased by L-arginine but not by prior treatment of ischemic plasma with heating or superoxide dismutase and catalase. These findings suggest the impaired relaxation is mediated through inhibition of the nitric oxide-cGMP pathway. Prolonged blunting of vasodilation by ischemic plasma may therefore contribute to maintenance of a sustained vasoconstriction and ischemic hypertension.

1989 ◽  
Vol 257 (6) ◽  
pp. H1910-H1916 ◽  
Author(s):  
V. M. Miller ◽  
P. M. Vanhoutte

Nitric oxide may be an endothelium-derived relaxing factor in systemic arteries and pulmonary veins. The endothelium-derived relaxing factor of systemic veins has not been characterized. Experiments were designed to determine whether the endothelium-derived relaxing factor of systemic veins shared chemical properties and mechanisms of action with nitric oxide. Rings of the canine femoral vein with and without endothelium were suspended in organ chambers for the measurement of isometric force. In rings without endothelium, relaxations to nitric oxide were augmented by superoxide dismutase plus catalase and were inhibited by hemoglobin, methylene blue, and LY 83583. The endothelium-dependent relaxations to acetylcholine and A23187 were not augmented by superoxide dismutase plus catalase but were inhibited by hemoglobin and only moderately reduced by either methylene blue or LY 83583. Relaxations to sodium nitroprusside were not inhibited by methylene blue and LY 83583. Relaxations to sodium nitroprusside were inhibited by ouabain and K+-free solution; those to nitric oxide were not. These results indicate that although the endothelium-derived relaxing factor released from canine systemic veins shares some chemical properties with nitric oxide, the mechanism by which relaxations are induced by the two differ. A factor dissimilar to nitric oxide but acting like sodium nitroprusside may be released by the endothelium of canine systemic veins.


1990 ◽  
Vol 68 (2) ◽  
pp. 735-747 ◽  
Author(s):  
S. L. Archer ◽  
K. Rist ◽  
D. P. Nelson ◽  
E. G. DeMaster ◽  
N. Cowan ◽  
...  

The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3′,5′-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.


FEBS Letters ◽  
2011 ◽  
Vol 585 (17) ◽  
pp. 2693-2697 ◽  
Author(s):  
Takalani Mulaudzi ◽  
Ndiko Ludidi ◽  
Oziniel Ruzvidzo ◽  
Monique Morse ◽  
Nicolette Hendricks ◽  
...  

1996 ◽  
Vol 76 (05) ◽  
pp. 791-798 ◽  
Author(s):  
Clara Lechi ◽  
Giuseppe Andrioli ◽  
Stefania Gaino ◽  
Rosamaria Tommasoli ◽  
Valeria Zuliani ◽  
...  

SummaryWe studied in vitro the antiplatelet activity of a new nitroderivative chemically related to acetylsalicylic acid: 2 acetoxybenzoate 2-[l-nitroxy-methyl]-phenyl ester (NCX 4016), in order to identify any effects due to the release of nitric oxide and the blockade of cyclooxygenaseThe effects of scalar doses of NCX 4016 on the early phase of platelet activation, platelet aggregation and thromboxane A2 production were investigated. We observed inhibitory effects of NCX 4016 on platelet adhesion (IC50 = 7.3 × 10−5 M), platelet cytosolic calcium concentration, assayed by fluorescent probe Fura 2, and the expression of glycoprotein IMIIa (CD41 / αIIbβ3) (IC50 = 3.4 × 10−5 M) and P-selec-tin (CD62 / GMP-140) (IC50 = 4.9 × 10−5 M) measured by flow cytometry. NCX 4016 also prevented thrombin-induced platelet aggregation (IC50 = 3.9 × 10−5 M). None of these parameters were affected by acetylsalicylic acid. These inhibitory activities of NCX 4016 were abolished by oxyhaemoglobin and methylene blue. Intracellular cyclic GMP observed during thrombin-induced aggregation was increased by incubation with NCX 4016. These results appear to be attributable to the release of nitric oxide, which activates soluble platelet guanylyl-cyclase and promotes intracellular cyclic GMP increase. NCX 4016 almost completely inhibited platelet thromboxane A2 production and arachidonic acid-induced platelet aggregation. This also occurred in the presence of oxyhaemoglobin and methylene blue, indicating that its antiplatelet activity can be attributed not only to nitric oxide release but also to cyclo-oxygenase inhibition.


1996 ◽  
Vol 271 (1) ◽  
pp. E113-E122 ◽  
Author(s):  
N. D. Vaziri ◽  
X. J. Zhou ◽  
F. Naqvi ◽  
J. Smith ◽  
F. Oveisi ◽  
...  

We studied the mechanism of erythropoietin (EPO)-induced hypertension (HTN) in rats with chronic renal failure (CRF). After partial nephrectomy, rats were randomized into four groups. Group A received EPO, 150 U/kg, two times weekly for 6 wk to prevent anemia; group B received placebo injections and became anemic; group C received EPO but was kept anemic by dietary iron deficiency; and group D received placebo and regular transfusions to match hematocrit (Hct) in group A. Blood pressure (BP), Hct, platelet cytosolic calcium ([Ca2+]i) and magnesium concentration, and pressor and vasodilatory responses were determined. By design, Hct in groups A and D were comparable and significantly greater (P < 0.01) than in groups B and C. Despite divergent Hct values, the EPO-treated groups A and C showed a significant rise in BP compared with the placebo-treated groups B and D. HTN occurred whether EPO therapy was begun immediately or 4 wk after nephrectomy. EPO therapy augmented the elevation of basal [Ca2+]i and restored the defective thrombin-mediated rise of platelet [Ca2+]i in CRF animals. EPO therapy did not alter caudal artery contraction in response to either 68 mM K(+)-induced depolarization, angiotensin II or alpha 1-agonist, methoxamine in vitro, or the pressor response to angiotensin II in vivo. However, EPO therapy impaired the hypotensive response to nitric oxide (NO) donors, sodium nitroprusside and S-nitroso-N-acetyl-D,L-penicillamine, and reversed the CRF-induced upregulation of guanosine 3',5'-cyclic monophosphate production by thoracic aorta in vitro. Thus EPO-induced HTN in CRF rats is Hct independent and is associated with and perhaps causally related to increased basal and stimulated [Ca2+]i and impaired vasodilatory response to NO.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 611
Author(s):  
Chae Young Lee ◽  
Han Gyung Kim ◽  
Sang Hee Park ◽  
Seok Gu Jang ◽  
Kyung Ja Park ◽  
...  

Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-β (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 μM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.


1996 ◽  
Vol 270 (4) ◽  
pp. H1225-H1230 ◽  
Author(s):  
D. W. Busija ◽  
W. Meng ◽  
F. Bari ◽  
P. S. McGough ◽  
R. A. Errico ◽  
...  

We examined the effects of total global ischemia on cerebral arteriolar responses to N-methyl-D-aspartate (NMDA) in anesthetized newborn pigs. Arteriolar responses to 10(-4) M NMDA were determined before and after 10 to 20 min of ischemia caused by increasing intracranial pressure. Before ischemia, NMDA dilated arterioles by 30 +/- 5% (baseline = 88 +/- 2 microns; n = 6). However, after 10 min of ischemia, arteriolar dilation was reduced to 10 +/- 3% at 1 h (P < 0.05). At 2 and 4 h, NMDA-induced dilation was not different from preischemia values. Twenty minutes of ischemia had similar effects. Coadministration of 100 U/ml of superoxide dismutase did not restore arteriolar dilation to NMDA at 1 h after ischemia. Sodium nitroprusside dilated by 14 +/- 3 and 40 +/- 5% at 10(-6) and 10(-5) M before ischemia, respectively, and arteriolar responsiveness was not changed by ischemia (n = 6). Cortical nitric oxide synthase (NOS) activity, measured by the in vitro conversion of L-[14C]arginine to L-[14C]citrulline, was unaffected by ischemia (n = 12). We conclude that decreases in cerebral arteriolar responsiveness to NMDA are not due to impairment of NOS activity, enhanced degradation or chelation of nitric oxide (NO), or reduced vascular smooth muscle responsiveness to NO.


1999 ◽  
Vol 277 (2) ◽  
pp. G478-G486 ◽  
Author(s):  
Mark K. Eskandari ◽  
Jörg C. Kalff ◽  
Timothy R. Billiar ◽  
Kenneth K. W. Lee ◽  
Anthony J. Bauer

Cellular mechanisms of sepsis-induced ileus remain an enigma. The study aim was to determine the role of nitric oxide (NO) in mediating the suppression of rat jejunal circular smooth muscle activity during endotoxemia. Isolated muscularis inducible NO synthase (iNOS) mRNA was measured by RT-PCR, immunohistochemistry was employed to localize iNOS protein, and contractile activity was measured in an organ bath. The low basal expression of muscularis iNOS mRNA expression was increased in a time-dependent fashion after lipopolysaccharide (LPS), resulting in a 20-fold increase over controls 3 h after injection. Immunohistochemistry of muscularis whole mounts and dissociated muscularis cells for iNOS revealed staining only in the muscularis macrophages 12 h after LPS. LPS caused a 68% reduction in spontaneous muscle activity 12 h after injection, which improved by 53% after the in vitro application of the selective iNOS inhibitorl- N6-(1-iminoethyl)lysine. Similar results were obtained in C57BL/6 mice but not in iNOS knockout mice. These data demonstrate that macrophage iNOS plays an important role in mediating LPS-induced intestinal circular muscle suppression.


1994 ◽  
Vol 77 (3) ◽  
pp. 1142-1147 ◽  
Author(s):  
K. Stuart-Smith ◽  
T. C. Bynoe ◽  
K. S. Lindeman ◽  
C. A. Hirshman

Nitrovasodilators and nitric oxide relax airway smooth muscle. The mechanism by which nitrovasodilators are thought to act is by release of nitric oxide, but the importance of nitric oxide in nitrovasodilator-induced airway smooth muscle relaxation is unclear. The aim of this study was to compare the relaxing effects of nitric oxide itself with those of nitrovasodilators in porcine tracheal muscle and intrapulmonary airways and to investigate the mechanisms involved. Strips of porcine tracheal smooth muscle, rings of bronchi, and strips of bronchi from the same animal were suspended in organ chambers in modified Krebs Ringer solution (95% O2–5% CO2, 37 degrees C). Tissues were contracted with carbachol, and concentration-response curves to nitric oxide, sodium nitroprusside, and SIN-1 (an active metabolite of molsidomine) were obtained. All tissues relaxed to sodium nitroprusside, SIN-1, and nitric oxide. The relaxation to nitric oxide but not to SIN-1 or sodium nitroprusside was inhibited by methylene blue. Tissues pretreated with methylene blue that failed to relax to nitric oxide were, however, relaxed by sodium nitroprusside. These results demonstrate that nitrovasodilators relax airways by a mechanism other than by or in addition to the release of nitric oxide.


1993 ◽  
Vol 264 (4) ◽  
pp. H1118-H1123 ◽  
Author(s):  
C. H. Baker ◽  
E. T. Sutton

Endotoxin shock has been reported to alter endothelial structure as well as function of large arteries from in vitro experiments. Cremaster muscle arteriolar dilator reactivity of pentobarbital-anesthetized rats was determined by videomicroscopy at control and 30, 90, 150, and 210 min after intravenous infusion of Escherichia coli endotoxin (6 mg/kg, 1-h period). The dilator response was tested by intra-arterial injections of 90 ng acetylcholine (ACh). At control A1, A2, and A3 arterioles dilated 45, 21, and 34%, respectively. Postendotoxin arterial pressure decreased progressively, the A1 arterioles constricted (P < 0.05), A2 diameters were unchanged and A3 diameters increased. Postendotoxin ACh dilations averaged 28, 23, and 25%. A1 dilation was significantly (P < 0.05) less than at control. Methylene blue (2.5 mg ia) attenuated the ACh response at control, but after endotoxin an intense downstream vasoconstriction resulted in stasis and reduced survival time occurred. Hydroquinone (HQ) partially blocked the responses to ACh postendotoxin. HQ significantly increased the survival time postendotoxin. It is evident postendotoxin that the endothelia of arterioles are functional and able to release nitric oxide (NO) throughout the entire survival period. The microvascular release of NO and the dilation response to ACh were substantially attenuated by methylene blue and HQ. The latter may block the more lethal effects of the inducible NO synthase.


Sign in / Sign up

Export Citation Format

Share Document