Overexpression of Escherichia coli Acetyl Esterase Using a Strategy of Multi-copy Promoters

2016 ◽  
Vol 9 (4) ◽  
pp. 561-570
Author(s):  
Zhiwei Wu ◽  
Jing Chen ◽  
Zunhao Zhang ◽  
Lina Ma ◽  
Tianhui Xu ◽  
...  
2010 ◽  
Vol 67 (1-2) ◽  
pp. 155-161 ◽  
Author(s):  
Ryuichi Kobayashi ◽  
Nobutaka Hirano ◽  
Shigenori Kanaya ◽  
Isao Saito ◽  
Mitsuru Haruki

2016 ◽  
Vol 198 (20) ◽  
pp. 2803-2809 ◽  
Author(s):  
Ariel Rangel ◽  
Susan M. Steenbergen ◽  
Eric R. Vimr

ABSTRACTThe sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, whereN-acetyl- orN-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations toN-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria withO-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity ofEscherichia coliNanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show thatE. colistrain O157:H7 Stx prophage or prophage remnants invariably include paralogs ofnanSoften located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialateO-acetyl esterases, as shown by complementation of anE. colistrain K-12nanSmutant and the unimpaired growth of anE. coliO157nanSmutant onO-acetylated sialic acid. We further demonstrate thatnanShomologs inStreptococcusspp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialateO-acetyl esterase.IMPORTANCEThe sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show thatnanShomologs exist in bacteria other thanEscherichia coli, as well as part of toxigenicE. coliprophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies ofnanSto include mucosal pathogens, prophage, and prophage remnants. This expansion of thenanSsuperfamily suggests important, although as-yet-unknown, functions in host-microbe interactions.


2006 ◽  
Vol 441 (2) ◽  
pp. 144-149 ◽  
Author(s):  
Pompea Del Vecchio ◽  
Giuseppe Graziano ◽  
Guido Barone ◽  
Luigi Mandrich ◽  
Mosè Rossi ◽  
...  

2002 ◽  
Vol 184 (11) ◽  
pp. 3069-3077 ◽  
Author(s):  
Anja Schlegel ◽  
Olivier Danot ◽  
Evelyne Richet ◽  
Thomas Ferenci ◽  
Winfried Boos

ABSTRACT The maltose system of Escherichia coli consists of a number of genes encoding proteins involved in the uptake and metabolism of maltose and maltodextrins. The system is positively regulated by MalT, its transcriptional activator. MalT activity is controlled by two regulatory circuits: a positive one with maltotriose as effector and a negative one involving several proteins. MalK, the ATP-hydrolyzing subunit of the cognate ABC transporter, MalY, an enzyme with the activity of a cystathionase, and Aes, an acetyl esterase, phenotypically act as repressors of MalT activity. By in vivo titration assays, we have shown that the N-terminal 250 amino acids of MalT contain the interaction site for MalY but not for MalK. This was confirmed by gel filtration analysis, where MalY was shown to coelute with the N-terminal MalT structural domain. Mutants in MalT causing elevated mal gene expression in the absence of exogenous maltodextrins were tested in their response to the three repressors. The different MalT mutations exhibited a various degree of sensitivity towards these repressors, but none was resistant to all of them. Some of them became nearly completely resistant to Aes while still being sensitive to MalY. These mutations are located at positions 38, 220, 243, and 359, most likely defining the interaction patch with Aes on the three-dimensional structure of MalT.


2006 ◽  
Vol 188 (17) ◽  
pp. 6195-6206 ◽  
Author(s):  
Susan M. Steenbergen ◽  
Young-Choon Lee ◽  
Willie F. Vann ◽  
Justine Vionnet ◽  
Lori F. Wright ◽  
...  

ABSTRACT O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion, followed by fluorescent labeling and detection of quinoxalinone derivatives by chromatography. The results indicated that NeuO is responsible for the majority of capsule modification that takes place in vivo. However, a minor neuO-independent O acetylation pathway was detected that is dependent on the bifunctional polypeptide encoded by neuD. This pathway involves O acetylation of monomeric sialic acid and is regulated by another bifunctional enzyme, NeuA, which includes N-terminal synthetase and C-terminal sialyl O-esterase domains. A homologue of the NeuA C-terminal domain (Pm1710) in Pasteurella multocida was also shown to be an esterase, suggesting that it functions in the catabolism of acetylated environmental sialic acids. Our combined results indicate a previously unexpected complexity in the synthesis and catabolism of microbial sialic and polysialic acids. These findings are key to understanding the biological functions of modified sialic acids in E. coli K1 and other species and may provide new targets for drug or vaccine development.


2016 ◽  
Vol 8 (7) ◽  
pp. 2339-2348
Author(s):  
Zhiwei Wu ◽  
Jing Chen ◽  
Zunhao Zhang ◽  
Lina Ma ◽  
Tianhui Xu ◽  
...  

2007 ◽  
Vol 14 (2) ◽  
pp. 165-169 ◽  
Author(s):  
T. Farias ◽  
L. Mandrich ◽  
M. Rossi ◽  
G. Manco

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document