FCM clustering and FLS based CH selection to enhance sustainability of wireless sensor networks for environmental monitoring applications

Author(s):  
Anagha Rajput ◽  
Vinoth Babu Kumaravelu
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ru Huang ◽  
Xiaoli Chu ◽  
Jie Zhang ◽  
Yu Hen Hu

Software defined wireless networks (SDWNs) present an innovative framework for virtualized network control and flexible architecture design of wireless sensor networks (WSNs). However, the decoupled control and data planes and the logically centralized control in SDWNs may cause high energy consumption and resource waste during system operation, hindering their application in WSNs. In this paper, we propose a software defined WSN (SDWSN) prototype to improve the energy efficiency and adaptability of WSNs for environmental monitoring applications, taking into account the constraints of WSNs in terms of energy, radio resources, and computational capabilities, and the value redundancy and distributed nature of data flows in periodic transmissions for monitoring applications. Particularly, we design a reinforcement learning based mechanism to perform value-redundancy filtering and load-balancing routing according to the values and distribution of data flows, respectively, in order to improve the energy efficiency and self-adaptability to environmental changes for WSNs. The optimal matching rules in flow table are designed to curb the control signaling overhead and balance the distribution of data flows for achieving in-network fusion in data plane with guaranteed quality of service (QoS). Experiment results show that the proposed SDWSN prototype can effectively improve the energy efficiency and self-adaptability of environmental monitoring WSNs with QoS.


2007 ◽  
Vol 3 (3) ◽  
pp. 207 ◽  
Author(s):  
Kejie Lu

In the past few years, wireless sensor networks (WSNs) are becoming more and more attractive because they can provide services that are not possible or not feasible before. In this paper, we address the design issues of an important type of WSNs, i.e., WSNs that enable environmental monitoring applications. We first provide an overview and analysis for our ongoing research project about a WSN for coastal-area acoustic monitoring. Based on the analysis, we then propose a cross-layer design framework for future WSNs that provide environmentalmonitoring services. The focus of the framework is the network layer design and the key idea of the framework is to fully understand and exploit both the physical layer characteristics and the requirements of upper layer applications and services. Particularly, for the physical layer characteristics, our framework 1) can enable advanced communication technologies such as cooperative communication and network coding; 2) can utilize the transmission characteristics for identifying/authenticating asender; and 3) can exploit the communication pattern as a mean of sensing. For the requirements of applications and services, our framework 1) is service-oriented; 2) can enable distributed applications; 3) can utilize the fact that many applications do not have strict delay constraints. To illustrate the advantages of the framework, we also conduct a case study that may be a typical scenario in the near future. We believe that our study in this work can provide a guideline for future WSN design.


Author(s):  
Ryoma Yasutani ◽  
Koki Kitazumi ◽  
Shusuke Narieda ◽  
Takeo Fujii ◽  
Kenta Umebayashi ◽  
...  

2017 ◽  
Vol 13 (08) ◽  
pp. 4
Author(s):  
Yong Jin ◽  
Zhenjiang Qian ◽  
Xiaoshuang Xing ◽  
Lu Shen

ensor nodes vulnerable becomes a major bottleneck restricting the wide application of wireless sensor networks WSNs (Wireless Sensor Networks). In order to satisfy the needs of industrial production and daily living environment monitoring, it is important to improve the survivability of wireless sensor networks in environmental monitoring application. In order to have a reliable environment monitoring system, this paper analyzed the damage types and causes of WSNs and the measurement methods of WSNs survivability. Then, we studied the fault detection method and finally realized the design can improve the survivability of the scheme. The robust guarantee scheme through hardware design and algorithm model, realized the remote wireless communication services and prolonged the network life cycle, so as to improve the survivability of the environmental monitoring system.


Sign in / Sign up

Export Citation Format

Share Document