A modified distance-based energy-aware (mDBEA) routing protocol in wireless sensor networks (WSNs)

Author(s):  
J.-D. Abdulai ◽  
K. S. Adu-Manu ◽  
F. A. Katsriku ◽  
F. Engmann
Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


Wireless Sensor Networks (WSNs) are emerging network technology with innumerable applications. But security and energy constraints reduce its successful deployments. The nodes in network are greatly involved in transmissions and other processing operations for maintenance other than establishing or handling a call. Due to limited processing ability, storage capacity and most importantly the available battery power of the nodes, it is required to minimize the transmission power and the amount of data transmitted, for efficient operation. This paper presents a power aware routing protocol designed for wireless sensor networks. The proposed routing protocol is an extended and enhanced version of Dynamic Source Routing protocol. It adds energy awareness to the existing implementation of DSR protocol. Energy metric is considered during route selection process to choose an optimal path in terms of overall energy of the nodes along the path, and “low energy notification” method is used during route maintenance process to increase the lifetime of the bridge nodes to avoid network partitioning. The performance of DSR protocol and Energy Aware DSR (EADSR) protocol are compared through NS2 simulation under different scenarios. In all the cases, it is seen that EADSR protocol out-performs DSR protocol by energy saving in efficient manner


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771738 ◽  
Author(s):  
Min Wook Kang ◽  
Yun Won Chung

In delay-tolerant wireless sensor networks, messages for sensor data are delivered using opportunistic contacts between intermittently connected nodes. Since there is no stable end-to-end routing path like the Internet and mobile nodes operate on battery, an energy-efficient routing protocol is needed. In this article, we consider the probabilistic routing protocol using history of encounters and transitivity protocol as the base protocol. Then, we propose an energy-aware routing protocol in intermittently connected delay-tolerant wireless sensor networks, where messages are forwarded based on the node’s remaining battery, delivery predictability, and type of nodes. The performance of the proposed protocol is compared with that of probabilistic routing protocol using history of encounters and transitivity and probabilistic routing protocol using history of encounters and transitivity with periodic sleep in detail, from the aspects of delivery ratio, overhead ratio, delivery latency, and ratio of alive nodes. Simulation results show that the proposed protocol has better delivery probability, overhead ratio, and ratio of alive nodes, in most of the considered parameter settings, in spite of a small increase in delivery latency.


Sign in / Sign up

Export Citation Format

Share Document