scholarly journals Comprehensive assessment of groundwater quality using heavy metal pollution indices and geospatial technique: a case study from Wanaparthy watershed of upper Krishna River basin, Telangana, India

2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Suantak Paolalsiam Vaiphei ◽  
Rama Mohan Kurakalva
2021 ◽  
Author(s):  
Suantak Paolalsiam Vaiphei ◽  
Rama Mohan Kurakalva

Abstract The present study is to characterize groundwater quality using heavy metal pollution indices and geospatial variations. A total of 58 samples from hand pump/submersible bore wells were collected from the Wanaparthy watershed of the upper Krishna River basin according to the grid size (5*6 km 2 ). The heavy metals concentration in groundwater samples are found in the order of Zn(38.67%)> B(32.67%)> Ba(13.59%)> As(8.49%)> Hg(3.71%)> Cr(1.28%)> Ni(0.52%)> Cd(0.47%). Among these heavy metals, arsenic (22.4%) and mercury (5.1%) were found above the permissible limits of WHO drinking water guideline values. A positive correlation between pH versus B/Ba/Hg, TH versus EC/TDS, and B versus Ba indicates the presence of metals due to chemical reaction (rock-water interaction). Arsenic correlation with EC/TDS/TH indicates artificial intervention. Drainage network analysis enumerates high concentration of parameters at near or joining to upper order of drainage system, which might be due to input of runoff water (interaction of variable rocks composition) and later stage infiltration to subsurface and reached to an aquifer. Heavy metal pollution index (HPI) showed 86.2% of samples are in the category of low class, whereas 12.1% of samples fall within medium class. According to metal index (MI) classification, 12.1% samples are in very pure, 24.14% samples are pure, while the remaining 63.8% samples are in the slightly to strongly affect category. This study suggested the main source of heavy metals in groundwater might be from the dominant granitoid rocks because the area is mostly devoid of industrialization.


2019 ◽  
Vol 9 ◽  
pp. 100245 ◽  
Author(s):  
Ali Rezaei ◽  
Hossein Hassani ◽  
Sara Hassani ◽  
Nima Jabbari ◽  
Seyedeh Belgheys Fard Mousavi ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


Author(s):  
Oya S. Okay ◽  
Murat Ozmen ◽  
Abbas Güngördü ◽  
Atilla Yılmaz ◽  
Sevil D. Yakan ◽  
...  

2017 ◽  
Vol 125 (1-2) ◽  
pp. 492-500 ◽  
Author(s):  
Ai-jun Wang ◽  
Chui Wei Bong ◽  
Yong-hang Xu ◽  
Meor Hakif Amir Hassan ◽  
Xiang Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document