Visualization of Partition Surface from Performance Indices of Gravity Separators

2015 ◽  
Vol 69 (1) ◽  
pp. 33-38 ◽  
Author(s):  
B. Venkoba Rao ◽  
H. Kumar Velan ◽  
S. J. Gopalkrishna
Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 131
Author(s):  
Jezabel D. Bianchotti ◽  
Melina Denardi ◽  
Mario Castro-Gama ◽  
Gabriel D. Puccini

Sectorization is an effective technique for reducing the complexities of analyzing and managing of water systems. The resulting sectors, called district metering areas (DMAs), are expected to meet some requirements and performance criteria such as minimum number of intervention, pressure uniformity, similarity of demands, water quality and number of districts. An efficient methodology to achieve all these requirements together and the proper choice of a criteria governing the sectorization is one of the open questions about optimal DMAs design. This question is addressed in this research by highlighting the advantages of three different criteria when applied to real-word water distribution networks (WDNs). To this, here it is presented a two-stage approach for optimal design of DMAs. The first stage, the clustering of the system, is based on a Louvain-type greedy algorithm for the generalized modularity maximization. The second stage, the physical dividing of the system, is stated as a two-objective optimization problem that utilises the SMOSA version of simulated annealing for multiobjective problems. One objective is the number of isolation valves whereas for the second objective three different performance indices (PIs) are analyzed and compared: (a) standard deviation, (b) Gini coefficient and (c) loss of resilience. The methodology is applied to two real case studies where the first two PIs are optimized to address similar demands among DMAs. The results demonstrate that the proposed method is effective for sectorization into independent DMAs with similar demands. Surprisingly, it found that for the real studied systems, loss of resilience achieves better performance for each district in terms of pressure uniformity and demand similarity than the other two specific performance criteria.


2021 ◽  
Author(s):  
Andrea Marin ◽  
Carla Piazza ◽  
Sabina Rossi

AbstractIn this paper, we deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the stationary performance indices of large stochastic models. The lumpability method is based on a state aggregation technique and applies to Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently compute the exact values of the stationary performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case, only upper and lower bounds on the performance indices can be derived. Here, we introduce a novel notion of quasi-lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently from the general definition of quasi-lumpability, it allows one to derive exact stationary performance indices for the original process. We then introduce the notion of proportional bisimilarity for the terms of the performance process algebra PEPA. Proportional bisimilarity induces a proportional lumpability on the underlying continuous-time Markov chains. Finally, we prove some compositionality results and show the applicability of our theory through examples.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Mahsa Mansourian ◽  
Sadaf Khademi ◽  
Hamid Reza Marateb

The World Health Organization (WHO) suggests that mental disorders, neurological disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar disorder, Alzheimer’s disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD) methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75% were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks, the classifiers, and the performance indices were analyzed. We further discussed how various performance indices are essential based on the biostatistical and data mining perspective. Moreover, critical information related to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing the dataset and not using external validation could hinder the generalization of the CAD methods. We provided the list of the critical issues to consider in such studies.


Sign in / Sign up

Export Citation Format

Share Document