scholarly journals A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Mahsa Mansourian ◽  
Sadaf Khademi ◽  
Hamid Reza Marateb

The World Health Organization (WHO) suggests that mental disorders, neurological disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar disorder, Alzheimer’s disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD) methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75% were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks, the classifiers, and the performance indices were analyzed. We further discussed how various performance indices are essential based on the biostatistical and data mining perspective. Moreover, critical information related to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing the dataset and not using external validation could hinder the generalization of the CAD methods. We provided the list of the critical issues to consider in such studies.

Author(s):  
Aswini Kumar Mohanty ◽  
Saroj Kumar Lenka

Diagnostic decision-making in pulmonary medical imaging has been improved by computer-aided diagnosis (CAD) systems, serving as second readers to detect suspicious nodules for diagnosis by a radiologist. Though increasing the accuracy, these CAD systems rarely offer useful descriptions of the suspected nodule or their decision criteria, mainly due to lack of nodule data. In this paper, we present a framework for mapping image features to radiologist-defined diagnostic criteria based on the newly available data). Using data mining, we found promising mappings to clinically relevant, human-interpretable nodule characteristics such as malignancy, margin, spiculation, subtlety, and texture. Bridging the semantic gap between computed image features and radiologist defined diagnostic criteria allows CAD systems to offer not only a second opinion but also decision-support criteria usable by radiologists. Presenting transparent decisions will improve the clinical acceptance of CAD.


2021 ◽  
Vol 26 (2) ◽  
pp. 176-186
Author(s):  
Lulu Mawaddah Wisudawati

Kanker payudara merupakan penyebab utama kematian pada wanita. Data Global Cancer Observatory 2018 dari World Health Organization (WHO, 2020) menunjukkan kasus kanker yang paling banyak terjadi di Indonesia adalah kanker payudara, yakni 58.256 kasus atau 16.7% dari total 348.809 kasus kanker. Mamografi merupakan teknik yang paling umum digunakan dalam mendeteksi tumor payudara menggunakan sistem sinar-X dosis rendah. Ada beberapa tipe abnormalitas dalam citra mammogram, yaitu mikrokalsifikasi dan massa. Penelitian ini bertujuan untuk meningkatkan performa sistem Computer-Aided Diagnosis (CAD) dalam mengklasifikasi tumor jinak dan tumor ganas dengan mengembangkan metode ekstraksi fitur menggunakan Gray Level Co-Occurrence Matrix (GLCM) dan metode klasifikasi menggunakan Support Vector Machine (SVM). Uji coba dilakukan dengan menggunakan database DDSM dengan 256 citra abnormal (95 tumor jinak dan 161 tumor ganas) menghasilkan nilai akurasi sebesar 83.59% dengan nilai sensitivitas dan spesifisitas 87.58% dan 76.84%. Selain itu, didapatkan nilai AUC sebesar 0.98%. Metode tersebut menunjukkan bahwa sistem memberikan hasil performa yang baik dalam mengklasifikasi tumor jinak dan tumor ganas.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22018-e22018
Author(s):  
Abir Belaala ◽  
Yazid Bourezane ◽  
Labib Sadek Terrissa ◽  
Zeina Al Masry ◽  
Noureddine Zerhouni

e22018 Background: The prevalence of skin cancer is increasing worldwide. According to World Health Organization (WHO),there is one in every three cancers diagnosed in US is a skin cancer. Traditional ways for skin cancer diagnosis have shown many limitations: inadequate accuracy, consume much time, and effort. In order to assist dermatologists for earlier and accurate diagnosis, we propose to develop a computer aided diagnosis systems for automatic classification of skin lesions. Deep learning architectures are used in this area based on a new convolutional neural network that can classify skin lesions with improved accuracy. Methods: A public dataset of skin lesions HAM10000 ("Human Against Machine with 10000 training images") is used for training and testing. For the validation of our work, a private dataset is collected from a dermatology office in Besançon (France). This dataset contains 45 different dermatoscopic images of skin lesions (Basal cell carcinoma, squamous cell carcinoma and Actinic keratosis) with their histology results. In this research, a three-phase approach was proposed and implemented: Phase one is preprocessing the data; by amputate missing values using the mean filling method. The dermoscopy images in the dataset were downscaled to 224X224 pixels. Then, data augmentation was applied to solve the imbalanced data problem. Finally, the ten-fold cross-validation method was applied to compare the performance of three CNN architectures used in literature: DenseNet 201, ResNet 152, and VGGNet with our proposed architecture. Results: Results obtained with our model show the highest classification accuracy 0.95, a sensitivity of 0, 96, a specificity of 0.94, and outperforms other algorithms in classifying these skin lesions. Conclusions: Our research improves the performance of computer aided diagnosis systems for skin lesions by giving an accurate classification. The use of this system helps dermatologists to make accurate classification with lower time, cost, and effort. Our future work will focus on generalizing the domain by developing a model that can classify various lesions using various types of data (dermoscopic images, histological images, clinical data, sensors data...etc) using the advanced techniques in literature of transfer learning and adaptors models.


2020 ◽  
Vol 50 (4) ◽  
pp. 482-491 ◽  
Author(s):  
Nasreen Mahomed ◽  
Bram van Ginneken ◽  
Rick H. H. M. Philipsen ◽  
Jaime Melendez ◽  
David P. Moore ◽  
...  

2020 ◽  
Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee ◽  
Jaehun Bang

Abstract Coronavirus disease 2019 (COVID-19) is a novel harmful respiratory disease that has rapidly spread worldwide. At the end of 2019, COVID-19 emerged as a previously unknown respiratory disease in Wuhan, Hubei Province, China. The world health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 based on the full resolution of digital X-ray images is the key to efficiently assisting patients by enabling physicians to reach a fast and accurate diagnosis decision. In this paper, a simultaneous deep learning computer-aided diagnosis (CAD) system based on the YOLO predictor is proposed that can detect and diagnose COVID-19, differentiating it from eight other respiratory diseases: atelectasis, infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. The proposed CAD system was assessed via five-fold tests for the multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system was trained with an annotated training set of 50,490 chest X-ray images. The regions on the entire X-ray images with lesions suspected of being due to COVID-19 were simultaneously detected and classified end-to-end via the proposed CAD predictor, achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. Most test images from patients with confirmed COVID-19 and other respiratory diseases were correctly predicted, achieving average intersection over union (IoU) greater than 90%. Applying deep learning regularizers of data balancing and augmentation improved the COVID-19 diagnostic performance by 6.64% and 12.17% in terms of the overall accuracy and the F1-score, respectively. It is feasible to achieve a diagnosis based on individual chest X-ray images with the proposed CAD system within 0.0093 s. Thus, the CAD system presented in this paper can make a prediction at the rate of 108 frames/s (FPS), which is close to real-time. The proposed deep learning CAD system can reliably differentiate COVID-19 from other respiratory diseases. The proposed deep learning model seems to be a reliable tool that can be used to practically assist health care systems, patients, and physicians.


Sign in / Sign up

Export Citation Format

Share Document