Co-ordinated optimal control of distributed generation in primary distribution system in presence of solar PV for loss reduction and voltage profile improvement

2021 ◽  
Author(s):  
Vani Bhargava ◽  
S. K. Sinha ◽  
M. P. Dave

The impact of wind technology on power quality for a distribution system is emphasized in this paper. The Power Quality of a Distribution system depends on voltage and Frequency quality. The pros of integrating the wind turbine to the system are loss reduction and voltage profile improvement but the cons of adding renewable energy to the distribution system are represented in this paper. such as voltage unbalance, flicker, power factor, and the impact of voltage and current harmonics are measured. The performed analysis results indicated the importance of the integration of DG based on Power quality Parameters.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2674-2683

In this paper a simple and an efficient technique for determining the size(s) and site(s) for Distributed Generation systems in electrical distribution systems is presented for power loss saving and voltage profile improvement, giving suitable weighing factors to each one of the considered objectives. For this purpose a method of analytic has been developed and used, which is based on change in real and reactive parts in the branch currents caused by the DG located, and is tested on a 69-bus electrical network. Obtained results shows best loss reduction as well as voltage profile enhancement of the network under consideration. Among various power factors assumed, the operation of Distributed Generation corresponding to load power factor can enhances the system performance greatly, compared to that at unity power factor.


Author(s):  
N. Khuan ◽  
S. R. A. Rahim ◽  
M. H. Hussain ◽  
A. Azmi ◽  
S. A. Azmi

<p>This paper presents an integration of distributed generation and capacitor in radial distribution system via Firefly Algorithm (FA).  In this study, the FA is developed in order to determine the optimal location and size for compensation schemes namely distributed generation (DG) and compensating capacitor (CC). The FA which is a meta-heuristic algorithm is inspired by the flashing behavior of fireflies. The proposed technique was tested on IEEE Reliability Test systems namely the IEEE 69-bus and the program was developed using the MATLAB programming software. The results shown a significant reduction in the line losses and voltage profile improvement has been obtained with the installation of distributed generation and capacitor in the system.</p>


Sign in / Sign up

Export Citation Format

Share Document