scholarly journals Network Reconfiguration for Loss Reduction and Voltage Profile Improvement of 110-Bus Radial Distribution System Using Exhaustive Search Techniques

Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.

Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


2015 ◽  
Vol 785 ◽  
pp. 38-42
Author(s):  
Aimi Idzwan Tajudin ◽  
Ahmad Asri Abd Samat ◽  
Pais Saedin ◽  
Mohamad Adha Mohamad Idin

—Network reconfiguration is a process of changing the original structure of the distribution network system with the intention of balancing the load in every system’s feeder at the same time to optimize the operation of the system. The process involve the changing of switching state (tie switches and sectionalize switches), with the aim to find the best combination that can increase the performance of the system while satisfying with the operational constraints. The extreme necessity to the process has become a challenging mission for the researcher to overcome the reconfiguration problems. Recent years have seen a rapid development of evolutionary algorithms and swarm intelligence based algorithms to resolve for network reconfiguration problems. For that reason, this report deals with Artificial Bee Colony (ABC) algorithm to be implemented in network reconfiguration procedure to achieve the optimum level of operation. The ease and simplicity of the algorithm and the capability to find the global optimization solution has made this algorithm appropriate for this project. The objective of this work focused on improvements of distribution power system, in terms of minimizing the total real power loss and improving the voltage profile within the acceptable value. The algorithm was tested on two different radial distribution system (33 bus and 69 bus radial distribution systems)


Author(s):  
Parasa Sushma Devi ◽  
Dasari Ravi Kumar ◽  
Kiran Chakravarthula

<p>Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network.</p>


2021 ◽  
pp. 1-11
Author(s):  
Srinivas Nagaballi ◽  
Vijay S. Kale

The advent of distributed energy resources is undoubtedly transforming the nature of the electric power system. The crisis of conventional energy sources and their environmental effects resulted in the integration of Distributed Generators (DGs) into the distribution system. Simultaneous application of optimum network reconfiguration, DGs, and Distribution Static Compensator (DSTATCOM) unit’s placement in the Radial Distribution Systems (RDS) comes with a raft of technical, economic, and environmental benefits. Benefits include improved power quality, reliability, stability, mitigation of power losses, and voltage profile improvement. In this paper, the combinational process of optimal deployment of DGs and DSTATCOM units in RDS with suitable network reconfiguration to achieve positive benefits has been analyzed. A recent metaphor-less based Artificial intelligence (AI) technique named the Rao-1 method is employed to overcome this combinational nonlinear optimization problem. The objective functions are to mitigate the power losses, enhance the voltage profile, and voltage stability index of the RDS considering the net economic cost-benefit to the distribution utility. The simulation study of this pragmatic approach problem is carried out on IEEE 33-bus RDS. The comparison of the results obtained by the Rao-1 method with other existing meta-heuristic optimization methods has been made to show its efficacy.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3351 ◽  
Author(s):  
Mirna Abd El-salam ◽  
Eman Beshr ◽  
Magdy Eteiba

Transformations are taking place within the distribution systems to cope with the congestions and reliability concerns. This paper presents a new technique to efficiently minimize power losses within the distribution system by optimally sizing and placing distributed generators (DGs) while considering network reconfiguration. The proposed technique is a hybridization of two metaheuristic-based algorithms: Grey Wolf Optimizer (GWO) and Particle Swarm Optimizer (PSO), which solve the network reconfiguration problem by optimally installing different DG types (conventional and renewable-based). Case studies carried out showed the proposed hybrid technique outperformed each algorithm operating individually regarding both voltage profile and reduction in system losses. Case studies are carried to measure and compare the performance of the proposed technique on three different works: IEEE 33-bus, IEEE 69-bus radial distribution system, and an actual 78-bus distribution system located at Cairo, Egypt. The integration of renewable energy with the distribution network, such as photovoltaic (PV) arrays, is recommended since Cairo enjoys an excellent actual record of irradiance according to the PV map of Egypt.


Sign in / Sign up

Export Citation Format

Share Document