scholarly journals The Impact of Location and Size of the Wind Technology on Power Quality in a Distribution System with Different Loads

The impact of wind technology on power quality for a distribution system is emphasized in this paper. The Power Quality of a Distribution system depends on voltage and Frequency quality. The pros of integrating the wind turbine to the system are loss reduction and voltage profile improvement but the cons of adding renewable energy to the distribution system are represented in this paper. such as voltage unbalance, flicker, power factor, and the impact of voltage and current harmonics are measured. The performed analysis results indicated the importance of the integration of DG based on Power quality Parameters.

2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 244
Author(s):  
Paweł Mazurek ◽  
Aleksander Chudy

The electric vehicles (EVs) could potentially have a significant impact on power quality parameters and distribution networks as they are non-linear loads and their charging might result in tremendous power demand. When connected to the utility grid, a large number of EV charging stations from different manufacturers might create significant harmonic current emissions, impact the voltage profile, and eventually affect the power quality. Nevertheless, practical examples of disturbances from charging stations have not been made public. This paper aims to clarify the characteristics of conductive disturbances and levels of current harmonics generated by charging station and their severity on the quality of electric energy. The analysis was based on tests of a prototype station of an EV charging station integrated with a LED street light. The tests concern the determination of current harmonics and the values of conductive electromagnetic disturbances in the 150 kHz–30 MHz range. The test results of the prototype charger with observed exceedances of current harmonics (25th–39th range) and conducted interference exceedances are comprehensively described. After applying filtering circuits to the final version of the station, retesting in an accredited laboratory showed qualitative compliance.


Author(s):  
Patrick Taiwo Ogunboyo ◽  
Remy Tiako ◽  
Innocent E. Davidson

This study addresses the effective mitigation of power quality disturbance such as unbalanced voltage, voltage fluctuation, voltage variation of secondary distribution network using dynamic voltage restorer (DVR). To make distribution system operate at its best performance and minimum loss, DVR is employed. The proposed system is designed using MATLAB/Simulink in Sim Power System tool box. Considering, nevertheless, that standard acceptable performance implies correct voltage profile, minimum loss, no phase shift for voltage and current, absence of overloading of transformers and electrical wires, and acceptable frequency deviation. The new setup of DVR has been put forward using dq0 controller and proportional integral (PI) controller method to improve voltage profile, correct unbalance voltage and enhance power quality problems in secondary distribution network. The simulation results attest to the ability of the proposed DVR configuration in mitigating the power quality problems in secondary distribution network.


2015 ◽  
Vol 797 ◽  
pp. 377-382
Author(s):  
Kamil Kurpiel

This article refers to the traditional solution of the non-dismantable sampler and to the dismantable sampler applied as a new solution. This research describes the results of a research project on how the structure of the sampler for assembling and storage of LPG samples influences the representativeness of samples under study. The research was carried out in two directions : analysis of gas samples for the current PN-EN 589, PN-EN ISO 4257 standards and analysis of microscopic and macroscopic inner surface of the sampler. It was observed the formation of contamination layers in samplers. The chemical composition of the layers was examined and identified possible impact on changing the quality parameters of LPG. Based on the conducted research and analysis, the impact of the changed structure on the quality parameters of the LPG fuel and its representativeness in reference to the part of the cargo from which it had been taken can be assessed. Allow to conclude the thesis that the structure of the dismantable sampler followed internal cylinder surface treatment affects the representativeness of the samples collected and analyzed type of LPG gas. The construction of the sampler and possible of cleaning sampler is particularly important for qualitative parameters such gases as corrosive to copper and sulfur content of the total. Impurities that may be present in LPG, derived from refinery and petrochemical processes (ammonia, water, sulfur, methanol, higher hydrocarbons, dirt) and the distribution system are causing the occurrence of secondary reactions. Results occurring secondary reactions adversely affect the quality of the LPG. The researched solution on the dismantled sampler was patented, implemented, and applied in practice. The possibility to dismantle and thoroughly clean the sampler prior to sample collection enhances the certainty of obtaining highly representative samples and credible test results.


2017 ◽  
Vol 66 (4) ◽  
pp. 801-814 ◽  
Author(s):  
Christoph Wenge ◽  
Hui Guo ◽  
Christian Roehrig

Abstract Electric vehicles (EVs) can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.


Sign in / Sign up

Export Citation Format

Share Document