Statistical characteristics and thermohaline properties of mesoscale eddies in the Bay of Bengal

2021 ◽  
Vol 40 (4) ◽  
pp. 10-22
Author(s):  
Wei Cui ◽  
Chaojie Zhou ◽  
Jie Zhang ◽  
Jungang Yang
2019 ◽  
Vol 49 (9) ◽  
pp. 2237-2254 ◽  
Author(s):  
Sebastian Essink ◽  
Verena Hormann ◽  
Luca R. Centurioni ◽  
Amala Mahadevan

AbstractA cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.


2014 ◽  
Vol 6 (6) ◽  
pp. 5164-5183 ◽  
Author(s):  
Yu-Hsin Cheng ◽  
Chung-Ru Ho ◽  
Quanan Zheng ◽  
Nan-Jung Kuo

2021 ◽  
Author(s):  
Abhijit Shee ◽  
Saikat Pramanik ◽  
Sourav Sil ◽  
Sudeep Das

<p>Mesoscale eddies, coherent rotating structure with typical horizontal scale of ~100 km and temporal scales of a month, play a significant role in ocean energy and mass transports. Here both mesoscale cyclonic and anticyclonic eddies moving towards south in the northern Bay of Bengal during 20<sup>th </sup>March 2017 to 20<sup>th</sup> May 2017 are observed using a high resolution (~5 km) nitrogen-based nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecological model embedded with Regional Ocean Modeling System (ROMS). Spatial maps of sea surface height anomaly (SSHA) from satellite-derived Archiving Validation, and Interpretation of Satellite Oceanographic (AVISO), and model are well matched. The centers and effective radii of both kind of eddies are identified using SSHA to proceed for their three-dimensional analysis. The extreme intensities of cyclonic and anticyclonic eddy centers are observed on 8<sup>th</sup> April 2017 at 86.40°E, 18.19°N and 84.80°E, 16.52°N respectively. Both kind of eddies are vertically extended upto 800 m and have radius ~100 km at surface. At these two locations, time-depth variations of zonal and meridional currents, and other physical (temperature and salinity) and bio-physical (chlorophyll-a, phytoplankton, zooplankton, detritus nutrient, dissolved oxygen and NO<sub>3</sub> nutrient) parameters are studied particularly from 8<sup>th</sup> March 2017 to 8<sup>th</sup> May 2017. Further vertical distribution of zonal and meridional currents, and other parameters are studied along the eddy diameters at their extreme intensity. In the vertical structure of both current components, an opposite sense between cyclonic and anticyclonic eddies are clearly captured, while other variables show strong upwelling and downwelling nature around the cyclonic and anticyclonic eddy centers respectively. Abundances (scarcities) of chlorophyll-a, phytoplankton, zooplankton and detritus nutrient are observed at 50 – 150 m depth of the cyclonic (anticyclonic) eddy center. The concentration of chlorophyll-a, phytoplankton, zooplankton and detritus nutrient reach to maximum of 1 mg/m<sup>3</sup>, 0.35 mMol/m<sup>3</sup>, 0.22 mMol/m<sup>3</sup> and 0.14 mMol/m<sup>3</sup> at ~80 m depth for the cyclonic eddy, while these are absent for the anticyclonic eddy.</p>


2020 ◽  
Author(s):  
Lanman Li ◽  
Xuhua Cheng

<p>Mesoscale eddies that known as a dominant reservoir of kinetic energy has been studied extensively for its dynamics and variation.In order to maintain energy budget equilibrium,the energy stored in mesoscale eddies is dissipated by small scale processes around centimeters.Submesoscale processes that lie between mesoscale and microscale motions effectively extract energy from mesoscale motions and transfer to smaller scales.The Bay of Bengal(the BOB) receives large fresh water from precipitation and river runoff resulting in strong salinity fronts that conducive to the generation of submesoscale processes.Using the Regional Ocean Modeling System(ROMS) data with two horizontal resolutions:a high-resolution(~1.6km) that is partially resolve submesoscale,and a low-resolution(~7km) that not resolves submesoscale,we focus on the seasonality of submesoscale processes in the Bay of Bengal.To ensure that only the submesoscale motions is considered,we choose 40km as the length to separate submesoscale from the flow field.Results show that submesocale processes is ubiquitous in the BOB,mainly trapped in the mixed layer.As resolution increasing,submesoscale motions become much stronger.Seasonality of submesoscale in the BOB is apparent and is different from the Gulf stream region  which is strongest in winter and weakest in summer.Submesoscale features in this region mostly present in fall,which the most important mechanisms is frontogenesis due to strong horizontal buoyancy flux associated with large strain.Submesoscale motions is also vigorous in winter.The proposed mechanism is that the depth of mixed layer is deep enough which contributes to the occurrence of mixed layer instability.During the whole year,mesoscale strain field is weakest in summer,which makes submesoscale weakest.</p>


Sign in / Sign up

Export Citation Format

Share Document