The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island

2019 ◽  
Vol 55 (4) ◽  
pp. 669-684 ◽  
Author(s):  
Can Bülent Karakuş
Author(s):  
Y. A. Aina ◽  
E. M. Adam ◽  
F. Ahmed

Urban heat island (UHI) effect is considered to be one of the key indicators of the impacts of urbanization and the climate changes on the environment. Thus, the growing interest in studying the impacts of urbanization on changes in land surface temperature (LST). The literature on LST indicates the need for more studies on the relationship between changes in LST and land use types, especially in the arid environment. This paper examines the spatial and temporal changes in land surface temperature influenced by land use/land cover types in Riyadh, Saudi Arabia. Multi-temporal Landsat images of the study area, 1985, 1995, 2002 and 2015, were processed to derive land surface temperatures. UHI index was computed for the different land use/land cover types (high-density residential, medium-density residential, low-density residential, industrial, vegetation, and desert) in the study area. The results indicate a trend of rising temperatures in all the land use types in the study area. This is probably due to climate change. The industrial area has the highest temperatures among the land use types. The lowest temperatures are found in the vegetation area as expected. There is a need to implement mitigating measures to reduce the effects of rising temperatures in the study area.


2021 ◽  
Author(s):  
Gurugnanam Balsubramanian ◽  
Glitson Francis Pereira ◽  
Bairavi Swaminathan ◽  
Santonu Goswami ◽  
Saroj B Choudhury

Abstract Due to marine and terrestrial processes, the land use/land cover features of the Ramanathapuram coastal area noticed dynamic changes. Sometimes the anthropogenic activities and nature also governed such changes. Landuse/Landcover analysis is an essential parameter for the climate change studies in coastal region. Similarly, the analysis of land surface temperature (LST) and the severity of Urban heat island (UHI) also factored for assessing its influence on climate changes. In this study, Remote sensed Landsat satellite data from 2000 to 2020 is very well used to identify the relation between LULC and LST. Advance tools in GIS (Geographic Information Systems) softwares is used to integrate the results. The findings strongly indicate that the built-up area is increasing every year. In the year 2000, the build-ups are noted with 8km2, and it was increased to 44 km2 in 2020. In addition, the LST of the year 2000, 2005, 2010, 2015, and 2020 radiates a maximum temperature of about 30oC, 29oC, 30oC, 30oC, and 27oC, respectively. The highest radiance temperature is observed in barren land; the UHI analysis also points towards increased urban activities. The temperature is comparatively high in an urbanised area, and its UHI values range from very Strong to moderate heat island.


Author(s):  
A. Tahooni ◽  
A. A. Kakroodi

Abstract. Urban Heat Island (UHI) refers to the development of higher urban temperatures of an urban area compared to the temperatures of surrounding suburban and rural areas. Highly reflective urban materials to solar radiation present a significantly lower surface temperature and contribute to reducing the sensible heat released in the atmosphere and mitigating the urban heat island. Many studies of the UHI effect have been based on Land Surface Temperature (LST) measurements from remote sensors. The remotely sensed UHI has been termed the surface urban heat island (SUHI) effect. This study examines Tabriz city land use/land cover (LULC) and LST changes using Landsat satellite images between 2000 and 2017. Maximum likelihood classification and single channel methods were used for LULC classification and LST retrieval respectively. Results show that impervious surface has increased 13.79% and bare soil area has decreased 16.2%. The results also revealed bare soil class LST after a constant trend become increasing. It also revealed the impervious surface LST has a decreasing trend between 2000 and 2011 and has a little change. Using materials that have low absorption and high reflectance decrease the effect of heat island considerably.


2021 ◽  
Vol 879 (1) ◽  
pp. 012010
Author(s):  
A S Liong ◽  
N Nasrullah ◽  
B Sulistyantara

Abstract Makassar City, the capital of South Sulawesi Province, is the largest metropolitan city in the eastern part of Indonesia, with a population development rate of 1.19% in 2019. An increase in population impacts city development and results in land use and land cover changes. Changes in land use and land cover pattern bring impact to Land Surface Temperature (LST). This study examines land cover’s influence on land surface temperature in Makassar City using multi-temporal satellite data. Land cover and LST data were extracted using Landsat 7 and Landsat 8 over the period of 1999, 2009, and 2019. The result shows that the highest increase in land cover changed was a built-up area of 13.1%, and vegetation decreased by 8.6%. The change in average LST value in the last 20 years was 0.39°C with the highest LST distribution areas was in 30-32°C and 32-34°C classes. The result of LST analysis in 2019 shows that the Urban Heat Island phenomenon has occurred in Makassar in the downtown area and several areas with the densely built-up area. With an overview of the UHI phenomenon in Makassar, the government is expected to raise public awareness of this phenomenon so that preventive actions can be taken, so the effects of UHI do not spread more widely.


Climate ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 71
Author(s):  
Priyanka Kumari ◽  
Sukriti Kapur ◽  
Vishal Garg ◽  
Krishan Kumar

Rapid urbanization and associated land-use changes in cities cause an increase in the demand for electricity by altering the local climate. The present study aims to examine the variations in total energy and cooling energy demand in a calibrated building energy model, caused by urban heat island formation over Delhi. The study used Sentinel-2A multispectral imagery for land use and land cover (LULC) of mapping of Delhi, and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for land surface temperature (LST) mapping during March 2018. It was observed that regions with dense built-up areas (i.e., with built-up area greater than 90%) had a higher annual land surface temperature (LST), i.e., 293.5 K and urban heat island intensity (UHII) ranging from 0.9 K–5.9 K. In contrast, lower annual values of LST (290K) and UHII (0.0–0.4 K) were observed in regions with high vegetation cover (53%). Statistical analysis reveals that a negative correlation exists between vegetation and nighttime LST, which is further confirmed by linear regression analysis. Energy simulations were performed on a calibrated building model placed at three different sites, identified on the basis of land use and land cover percentage and annual LST. Simulation results showed that the site located in the central part of Delhi displayed higher annual energy consumption (255.21 MWh/y) compared to the site located in the rural periphery (235.69 MWh/y). For all the three sites, the maximum electricity consumption was observed in the summer season, while the minimum was seen in the winter season. The study indicates that UHI formation leads to increased energy consumption in buildings, and thus UHI mitigation measures hold great potential for energy saving in a large city like Delhi.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1106
Author(s):  
Auwalu Faisal Koko ◽  
Yue Wu ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed ◽  
...  

Rapid urban expansion and the alteration of global land use/land cover (LULC) patterns have contributed substantially to the modification of urban climate, due to variations in Land Surface Temperature (LST). In this study, the LULC change dynamics of Kano metropolis, Nigeria, were analysed over the last three decades, i.e., 1990–2020, using multispectral satellite data to understand the impact of urbanization on LST in the study area. The Maximum Likelihood classification method and the Mono-window algorithm were utilised in classifying land uses and retrieving LST data. Spectral indices comprising the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) were also computed. A linear regression analysis was employed in order to examine the correlation between land surface temperature and the various spectral indices. The results indicate significant LULC changes and urban expansion of 152.55 sq. km from 1991 to 2020. During the study period, the city’s barren land and water bodies declined by approximately 172.58 sq. km and 26.55 sq. km, respectively, while vegetation increased slightly by 46.58 sq. km. Further analysis showed a negative correlation between NDVI and LST with a Pearson determination coefficient (R2) of 0.6145, 0.5644, 0.5402, and 0.5184 in 1991, 2000, 2010, and 2020 respectively. NDBI correlated positively with LST, having an R2 of 0.4132 in 1991, 0.3965 in 2000, 0.3907 in 2010, and 0.3300 in 2020. The findings of this study provide critical climatic data useful to policy- and decision-makers in optimizing land use and mitigating the impact of urban heat through sustainable urban development.


Sign in / Sign up

Export Citation Format

Share Document