scholarly journals Holistic approach to control Melolontha spp. in organic strawberry plantations

2020 ◽  
Vol 10 (S1) ◽  
pp. 13-22
Author(s):  
Eligio Malusá ◽  
Małgorzata Tartanus ◽  
Ewa M. Furmanczyk ◽  
Barbara H. Łabanowska

AbstractTo achieve an effective reduction of the damage by root feeding grubs of Melolontha spp. in organic strawberry plantations, we have tested an approach targeting different stages of the insect’s biological cycle. Adult beetles were caught by using light traps or by manual shaking off trees associated to the monitoring of cockchafer swarm flights supported by forecasts models. Phytosanitary pre-crops and the application of biological control agents were tested against the larvae. The three predictive models utilized to forecast the period of emergence of the cockchafer were suitable to support the deployment of the light traps before the adults’ swarm flights. Traps positioned at 4-m height were more effective in attracting the beetles than those kept at 2-m height. Buckwheat in mixtures with either a mustard or leguminous species used as pre-crops was able to reduce the population of grubs, and considering also its capacity in solubilizing recalcitrant phosphorous sources should enter in a rotation with strawberry or any other crop susceptible to grubs damage. The distribution of two different strains of entomopathogenic fungi resulted in a reduction of the damage to plants due to the cockchafer grubs’ activity, even though the efficacy resulted to be dependent on environmental and agronomic factors, including the kind of formulation used. It is concluded that to assure a sufficient level of control of Melolontha spp. in organic strawberry plantations, it is necessary to integrate several methods that are targeting the different biological stages of the insect and are based on different kinds of practices.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Żaneta Fiedler ◽  
Danuta Sosnowska

Abstract Products based on different strains of entomopathogenic fungi are now being used in Integrated Pest Management (IPM) programs. Compatibility studies of chemical and biological control agents are necessary to be able to give proper recommendations for their integrated use. The effect of three insecticides based on imidacloprid, spinosad and abamectin, and three fungicides based on chlorothalonil, azoxystrobin and thiophanate-methyl on the activity of the following entomopathogenic fungi: Metarhizium anisopliae (Metschn.) sensu lato, Beauveria bassiana (Bals.-Criv.) Vuill., Acremonium sp. was tested under laboratory conditions. Tests of the influence of the pesticides on growth and production of conidia were performed. From this study, we concluded that all tested insecticides can be applied together with fungus B. bassiana products in IPM programs. They even stimulate sporulation of this fungus at the recommended dose, 0.5 of the recommended dose and 1.5 times the recommended dose. In the case of fungicides we observed inhibition of growth and sporulation of B. bassiana and reduction of growth and sporulation of other species of fungi.


2018 ◽  
Vol 84 (0) ◽  
Author(s):  
Margy Alejandra Esparza Mora ◽  
Alzimiro Marcelo Conteiro Castilho ◽  
Marcelo Elias Fraga

ABSTRACT: Entomopathogenic fungi are important biological control agents throughout the world, have been the subject of intensive research for more than 100 years, and can occur at epizootic or enzootic levels in their host populations. Their mode of action against insects involves attaching a spore to the insect cuticle, followed by germination, penetration of the cuticle, and dissemination inside the insect. Strains of entomopathogenic fungi are concentrated in the following orders: Hypocreales (various genera), Onygenales (Ascosphaera genus), Entomophthorales, and Neozygitales (Entomophthoromycota).


Author(s):  
Waill A. Elkhateeb ◽  
Marwa O. Elnahas ◽  
Ghoson M. Daba ◽  
Abdel-Nasser A. Zohri

The genus Trichoderma is multicultural soil-borne fungi found in different ecosystems. They are highly successful colonizers of their habitats. Genus Trichoderma is capable of dealing with various environments such as compost, agricultural soils, rhizosphere, and waste material. Therefore, different strains of Trichoderma have been applied in agriculture, bioremediation, waste management, and biotechnology. Many Trichoderma species act as biological control agents and plant growth promoters. Additionally, the genus Trichoderma is a new fungal source for the production of cyclosporin A as well as various hydrolytic enzymes with industrial importance.


2013 ◽  
Vol 53 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Deane N Woruba ◽  
Michael J Priest ◽  
Charles F Dewhurst ◽  
Catherine W Gitau ◽  
Murray J Fletcher ◽  
...  

2016 ◽  
Vol 109 (2) ◽  
pp. 594-601 ◽  
Author(s):  
R. T. Duarte ◽  
K. C. Gonçalves ◽  
D. J. L. Espinosa ◽  
L. F. Moreira ◽  
S. A. De Bortoli ◽  
...  

2017 ◽  
Vol 78 (3) ◽  
pp. 457-463 ◽  
Author(s):  
C. L. Barbosa-Andrade ◽  
F. J. Cividanes ◽  
S. T. S. Matos ◽  
D. J. Andrade

Abstract Carabids are recognized worldwide as biological control agents of agricultural pests. The objective was to compare the life cycle of Abaris basistriata Chaudoir (Coleoptera: Carabidae) on three substrates: soil, fine vermiculite, or paper napkins. The biological cycle of A. basistriata presented different durations in soil and paper. The viability of eggs and larvae survival of the first and second instars were similar on all three substrates, while the third instar and pupa in the soil presented higher survival when compared with vermiculite and paper. The soil substrate was more favorable for the longevity of the carabid beetle. Abaris basistriata showed a shorter pre-oviposition period and a higher oviposition and post-oviposition period in the soil. Fecundity and fertility were higher when A. basistriata was reared on soil. The soil was most favorable substrate for rearing of A. basistriata in the laboratory. This information may make this species useful for the biological control.


Sign in / Sign up

Export Citation Format

Share Document