laurel wilt disease
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 47 (3) ◽  
pp. 98-109
Author(s):  
Jeffrey Hamilton ◽  
Stephen Fraedrich ◽  
Campbell Nairn ◽  
Albert Mayfield ◽  
Caterina Villari

Background: Laurel wilt disease has caused the extensive mortality of lauraceous species in the southeastern United States. The causal agent is an invasive fungus, Raffaelea lauricola, which is a symbiont of the beetle Xyleborus glabratus and causes a rapid, fatal vascular wilt. Early diagnosis of laurel wilt is imperative for efficient disease management. The current diagnostic process, however, is slow due to the lengthy laboratory procedures required to confirm pathogen presence. Methods: We tested the robustness and field-portability of a recently developed, species-specific, loop-mediated isothermal amplification (LAMP) assay for R. lauricola, with the overall goal of eliminating the need for a laboratory confirmation of the diagnosis. We tested the robustness of the assay using benchtop equipment with naturally infected samples. We then tested the assay directly in the field using a portable device. Results: The assay successfully detected R. lauricola directly from symptomatic wood tissue using crude DNA extracts. Furthermore, the assay readily allowed users to distinguish between symptoms caused by R. lauricola infection and similar symptoms caused by other agents. In-field, we assayed wood samples from symptomatic redbay (Persea borbonia [L.] Spreng) and sassafras (Sassafras albidum [Nutt.] Nees) across the Southeast and successfully detected R. lauricola-infected trees in less than an hour. Conclusion: Results of this study confirmed that the field-deployable LAMP assay is robust and can rapidly and accurately detect R. lauricola in infected trees directly on-site. LAMP technology is well suited for in-field implementation, and these results serve as an incentive for further development and use of this technology in the field of forest pathology.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rabiu Olatinwo ◽  
Jaesoon Hwang ◽  
Wood Johnson

In the past two decades, laurel wilt disease has significantly affected members of the Lauraceae in the southeast United States, causing widespread mortality of native redbay (Persea borbonia (L.) Spreng), and incidence of infections in avocado (Persea americana Mill.), sassafras (Sassafras albidum L.) and swamp bay (Persea palustris [Raf.] Sarg.) (Fraedrich et al., 2008, 2015, Olatinwo, et al. 2019). Laurel wilt is a vascular disease caused by Raffaelea lauricola (T.C. Harr., Fraedrich & Aghayeva), a fungus vectored by a non-native ambrosia beetle Xyleborus glabratus Eichhoff (Fraedrich et al. 2008). In August 2020, we investigated the mortality of a spicebush shrub (Lindera benzoin L.) (3.8 cm diameter at root collar, two m height) located ca. 17 mi northeast of Colfax, Grant Parish, Louisiana (31.750263° N, -92.643694° W). Evaluation of the dead shrub revealed brown, persistent foliage, and black vascular discoloration of the sapwood, typical symptoms of laurel wilt (Fig. S1). Although, beetle holes were observed on the sapwood, no beetle was found in galleries at the time. In the laboratory, a fungus consistently isolated from surface-sterilized sapwood tissues plated on potato dextrose agar (PDA) was identified as R. lauricola based on the morphological characteristics of the isolate (i.e., mucoid growth, conidiophores, and oblong/ovoid shape conidia [Harrington et al. 2008]). The fungal isolate was denoted as SB1. The identity of the fungus was confirmed by positive PCR amplification of the large subunit ribosomal RNA gene region using species-specific primers; rab-lsu-rl_F: CCCTCGCGGCGTATTATAG and rab-lsu-rl_R: GCGGGGCTCCTACTCAAA (Olatinwo, unpublished). The sequence of the isolate SB1 (GenBank Accession no. MW207371) showed 100% homology to the R. lauricola strain CBS 127349 sequence (GenBank Accession no. MH877933). The pathogenicity of SB1 on spicebush was evaluated on four healthy shrubs (average: 1 m height and 40 mm in diameter) at the location from which the original detection was made. Stems of two spicebush shrubs were inoculated with SB1 agar plugs from a 14-day old culture on PDA, while plain PDA plugs were used on the remaining two shrubs as non-inoculated controls. Agar plugs were placed in 5 mm (0.2 in) diameter hole punched on the bark with cork-borer as described by Mayfield et al (2008). After six weeks, the R. lauricola inoculated shrubs were wilted with noticeable blackened tissue discoloration in the sapwood, while the control trees remained healthy (Fig. S2). Raffaelea lauricola was re-isolated from tissue of the two inoculated, symptomatic shrubs, but not from the control trees. The sequence of the re-isolated R. lauricola isolate, denoted as SB3 (GenBank Accession no. MW207372), showed 100% homology to the R. lauricola strain CBS 127349 and isolate SB1. This first documentation of laurel wilt on spicebush in Louisiana is significant because, spicebush berries, leaves, and twigs are food sources for forest animals, birds, and insects including whitetail deer and spicebush swallowtail (Papilio troilus L.). Since its first report on sassafras in 2014 (Fraedrich et al. 2015), laurel wilt has spread across Louisiana on sassafras and swamp bay (Olatinwo et al. 2019) and has been confirmed in14 parishes. This report shows the relentless nature of the disease, as the pathogen moves from one vulnerable host to the next, expanding into new locations and threatening forest ecosystems across the southern United States.


2020 ◽  
Author(s):  
Robin A. Choudhury ◽  
Hong Ling Er ◽  
Marc A. Hughes ◽  
Jason A. Smith ◽  
Gretchen E. Pruett ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3151-3158
Author(s):  
Jeffrey L. Hamilton ◽  
J. Noah Workman ◽  
Campbell J. Nairn ◽  
Stephen W. Fraedrich ◽  
Caterina Villari

Since its introduction in 2002, laurel wilt disease has devastated indigenous lauraceous species in the southeastern United States. The causal agent is a fungal pathogen, Raffaelea lauricola, which, after being introduced into the xylem of trees by its vector beetle, Xyleborus glabratus, results in a fatal vascular wilt. Rapid detection and accurate diagnosis of infections is paramount to the successful implementation of disease management strategies. Current management operations to prevent the spread of laurel wilt disease are largely delayed by time-consuming laboratory procedures to confirm the diagnosis. In order to greatly speed up the operations, we developed a loop-mediated isothermal amplification (LAMP) species-specific assay that targets the β-tubulin gene region of R. lauricola, and allows for the rapid detection of the pathogen directly from host plant and beetle tissues. The assay is capable of amplifying as little as 0.5 pg of fungal DNA and as few as 50 conidia. The assay is also capable of detecting R. lauricola directly from wood tissue of artificially inoculated redbay saplings as early as 10 and 12 days postinoculation, when testing high-quality and crude DNA extracts, respectively. Finally, crude DNA extracts of individual adult female X. glabratus beetles were assayed and the pathogen was detected from all specimens. This assay greatly reduces the time required to confirm a laurel wilt diagnosis and, because LAMP technology is well suited to provide point-of-care testing, it has the potential to expedite and facilitate implementation of management operations in response to disease outbreaks.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Jonathan Henry Crane ◽  
Jeff Wasielewski ◽  
Daniel Carrillo ◽  
Romina Gazis ◽  
Bruce Schaffer ◽  
...  

This is the Spanish translation of HS1358, Recommendations for the Detection and Mitigation of Laurel Wilt Disease in Avocado and Related Tree Species in the Home Landscape. Avocado trees are a popular choice for homeowners in Florida, with over 600,000 growing in Florida home landscapes. However, avocado trees as well as others in the Lauraceae family are susceptible to laurel wilt disease, which can kill a tree in as few as three weeks. This new 8-page publication of the UF/IFAS Horticultural Sciences Department provides home owners recommendations for identifying and mitigating laurel wilt disease in the home landscape. Written by Jonathan H. Crane, Jeff Wasielewski, Daniel Carrillo, Romina Gazis, Bruce Schaffer, Fredy Ballen, and Edwards Evans.https://edis.ifas.ufl.edu/hs1384


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Jonathan Henry Crane ◽  
Jeff Wasielweski ◽  
Daniel Carrillo ◽  
Romina Gazis ◽  
Bruce Schaffer ◽  
...  

Avocado trees are a popular choice for homeowners in Florida, with over 600,000 growing in Florida home landscapes. However, avocado trees as well as others in the Lauraceae family are susceptible to laurel wilt disease, which can kill a tree in as few as three weeks. This new publication of the UF/IFAS Horticultural Sciences Department provides home owners recommendations for identifying and mitigating laurel wilt disease in the home landscape. Written by Jonathan H. Crane, Jeff Wasielewski, Daniel Carrillo, Romina Gazis, Bruce Schaffer, Fredy Ballen, and Edwards Evans.https://edis.ifas.ufl.edu/hs1358


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Monique J. Rivera ◽  
Xavier Martini ◽  
Derrick Conover ◽  
Agenor Mafra-Neto ◽  
Daniel Carrillo ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1777
Author(s):  
R. Olatinwo ◽  
J. Hwang ◽  
W. Johnson ◽  
S. W. Fraedrich

Sign in / Sign up

Export Citation Format

Share Document