xyleborus glabratus
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 47 (3) ◽  
pp. 98-109
Author(s):  
Jeffrey Hamilton ◽  
Stephen Fraedrich ◽  
Campbell Nairn ◽  
Albert Mayfield ◽  
Caterina Villari

Background: Laurel wilt disease has caused the extensive mortality of lauraceous species in the southeastern United States. The causal agent is an invasive fungus, Raffaelea lauricola, which is a symbiont of the beetle Xyleborus glabratus and causes a rapid, fatal vascular wilt. Early diagnosis of laurel wilt is imperative for efficient disease management. The current diagnostic process, however, is slow due to the lengthy laboratory procedures required to confirm pathogen presence. Methods: We tested the robustness and field-portability of a recently developed, species-specific, loop-mediated isothermal amplification (LAMP) assay for R. lauricola, with the overall goal of eliminating the need for a laboratory confirmation of the diagnosis. We tested the robustness of the assay using benchtop equipment with naturally infected samples. We then tested the assay directly in the field using a portable device. Results: The assay successfully detected R. lauricola directly from symptomatic wood tissue using crude DNA extracts. Furthermore, the assay readily allowed users to distinguish between symptoms caused by R. lauricola infection and similar symptoms caused by other agents. In-field, we assayed wood samples from symptomatic redbay (Persea borbonia [L.] Spreng) and sassafras (Sassafras albidum [Nutt.] Nees) across the Southeast and successfully detected R. lauricola-infected trees in less than an hour. Conclusion: Results of this study confirmed that the field-deployable LAMP assay is robust and can rapidly and accurately detect R. lauricola in infected trees directly on-site. LAMP technology is well suited for in-field implementation, and these results serve as an incentive for further development and use of this technology in the field of forest pathology.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 796
Author(s):  
Xavier Martini ◽  
Marc A. Hughes ◽  
Derrick Conover ◽  
Jason Smith

This review highlights current advances in the management of the redbay ambrosia beetle, Xyleborus glabratus, a primary vector of the pathogenic fungus, Raffaelea lauricola, that causes laurel wilt. Laurel wilt has a detrimental effect on forest ecosystems of southeastern USA, with hundreds of millions of Lauraceae deaths. Currently, preventive measures mostly focus on infected-tree removal to potentially reduce local beetle populations and/or use of preventative fungicide applications in urban trees. Use of semiochemicals may offer an opportunity for the management of X. glabratus. Research on attractants has led to the development of α-copaene lures that are now the accepted standards for X. glabratus sampling. Research conducted on repellents first included methyl salicylate and verbenone and attained significant reduction in the number of X. glabratus captured on redbay and swamp bay trees treated with verbenone. However, the death rate of trees protected with verbenone, while lower compared to untreated trees, is still high. This work underscores the necessity of developing new control methods, including the integration of repellents and attractants into a single push-pull system.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Tyler J. Dreaden ◽  
Marc A. Hughes ◽  
Randy C. Ploetz ◽  
Adam Black ◽  
Jason A. Smith

Laurel wilt is caused by the fungus Raffaelea lauricola T.C. Harr., Fraedrich and Aghayeva, a nutritional symbiont of its vector the redbay ambrosia beetle, Xyleborus glabratus Eichhoff. Both are native to Asia but appeared in Georgia in the early 2000s. Laurel wilt has since spread to much of the southeastern United States killing >300 million host trees in the Lauraceae plant family. The aims of this research were to elucidate the genetic structure of populations of R. lauricola, to examine its reproductive strategy, and determine how often the pathogen had been introduced to the USA. A panel of 12 simple sequence repeat (SSR) markers identified 15 multilocus genotypes (MLGs) in a collection of 59 isolates from the USA (34 isolates), Myanmar (18), Taiwan (6) and Japan (1). Limited diversity in the USA isolates and the presence of one MAT idiotype (mating type locus) indicated that R. lauricola was probably introduced into the country a single time. MLG diversity was far greater in Asia than the USA. Only three closely related MLGs were detected in the USA, the most prevalent of which (30 of 34 isolates) was also found in Taiwan. Although more work is needed, the present results suggest that a Taiwanese origin is possible for the population of R. lauricola in the USA. Isolates of R. lauricola from Myanmar were distinct from those from Japan, Taiwan and the USA. Although both MAT idiotypes were present in Myanmar and Taiwan, only the population from Taiwan had the genetic structure of a sexually reproducing population.


Life ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Jazmín Blaz ◽  
Josué Barrera-Redondo ◽  
Mirna Vázquez-Rosas-Landa ◽  
Anahí Canedo-Téxon ◽  
Eneas Aguirre von Wobeser ◽  
...  

Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus–Fusarium euwallaceae and Xyleborus glabratus–Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.


2018 ◽  
Author(s):  
Stephen W Fraedrich ◽  
Thomas C Harrington ◽  
Qiong Huang ◽  
Stanley J Zarnoch ◽  
James L Hanula ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Paul E. Kendra ◽  
Wayne S. Montgomery ◽  
Jerome Niogret ◽  
Nurhayat Tabanca ◽  
David Owens ◽  
...  

AbstractRedbay ambrosia beetle, Xyleborus glabratus, is native to Southeast Asia, but subsequent to introduction in Georgia in 2002, it has become a serious invasive pest in the USA, now established in nine southeastern states. Females vector Raffaelea lauricola, the fungus that causes laurel wilt, a lethal vascular disease of trees in the family Lauraceae. Laurel wilt has caused extensive mortality in native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Avocado (P. americana) is now impacted in Florida, and with continued spread, laurel wilt has potential to affect avocado and native Lauraceae in California, Mexico, and throughout the American tropics. Effective lures for detection and control of X. glabratus are critical to slow the spread of laurel wilt. No pheromones are known for this species; primary attractants are volatile terpenoids emitted from host Lauraceae. This report provides a concise summary of the chemical ecology of X. glabratus, highlighting research to identify kairomones used by females for host location. It summarizes development of essential oil lures for pest detection, including discussions of the initial use of phoebe and manuka oil lures, the current cubeb oil lure, and a newly-developed distilled oil lure enriched in (-)-α-copaene.


2017 ◽  
Vol 20 (4) ◽  
pp. 995-1007 ◽  
Author(s):  
John P. Formby ◽  
John C. Rodgers ◽  
Frank H. Koch ◽  
Natraj Krishnan ◽  
Donald A. Duerr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document