Plant growth promotion by Gluconacetobacter diazotrophicus and its interaction with genotype and phosphorus availability in tomato seedlings

Author(s):  
Gloria M. Restrepo ◽  
Nelson Ceballos ◽  
Luis F. Valencia ◽  
Óscar J. Sánchez
2019 ◽  
Vol 14 (22) ◽  
pp. 935-942 ◽  
Author(s):  
Borges de Oliveira Thais ◽  
Bizarria Junior Rodolfo ◽  
Godoi Silva Luana ◽  
Maria Rosa-Magri Marcia

2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


2021 ◽  
Vol 9 (4) ◽  
pp. 870
Author(s):  
Muhammad Aammar Tufail ◽  
María Touceda-González ◽  
Ilaria Pertot ◽  
Ralf-Udo Ehlers

Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). A pot experiment was conducted whereby treatments consisted of maize plants cultivated under drought stress, in soil with a low nitrogen concentration and these two stress sources combined, with and without G. diazotrophicus seed inoculation. The inoculated plants showed increased plant biomass, chlorophyll content, plant nitrogen uptake, and water use efficiency. A general increase in copy numbers of G. diazotrophicus, based on 16S rRNA gene quantification, was detected under combined moderate stress, in addition to an increase in the abundance of genes involved in N fixation (nifH). Endophytic colonization of bacteria was negatively affected by severe stress treatments. Overall, G. diazotrophicus Pal5 can be considered as an effective tool to increase maize crop production under drought conditions with low application of nitrogen fertilizer.


2021 ◽  
pp. 104961
Author(s):  
Sravani Ankati ◽  
Vadlamudi Srinivas ◽  
Sambangi Pratyusha ◽  
Subramaniam Gopalakrishnan

Sign in / Sign up

Export Citation Format

Share Document