scholarly journals Genome Mining and Evaluation of the Biocontrol Potential of Pseudomonas fluorescens BRZ63, a New Endophyte of Oilseed Rape (Brassica napus L.) against Fungal Pathogens

2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Maedeh Kamali ◽  
Dianjing Guo ◽  
Shahram Naeimi ◽  
Jafar Ahmadi

Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.


2021 ◽  
Vol 11 ◽  
Author(s):  
Md. Arshad Ali ◽  
Yang Lou ◽  
Rahila Hafeez ◽  
Xuqing Li ◽  
Afsana Hossain ◽  
...  

Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus’ antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.


Botany ◽  
2016 ◽  
Vol 94 (12) ◽  
pp. 1209-1217 ◽  
Author(s):  
Kiran Preet Padda ◽  
Akshit Puri ◽  
Chris P. Chanway

Paenibacillus polymyxa P2b-2R is an endophytic strain capable of fixing nitrogen (N) and promoting growth in a broad range of hosts. In this study, the ability of Paenibacillus polymyxa P2b-2R to fix N and promote the growth of canola (Brassica napus L.) was determined in a 3-month-long trial. We also compared growth promoting and N-fixing capability of wild-type P2b-2R and its GFP-tagged counterpart. Canola seedlings were inoculated with strain P2b-2Rgfp or P2b-2R. Non-inoculated seedlings were used as controls. Canola seedlings were grown for 3 months before evaluating plant growth promotion (length, biomass, and pod mass) and N fixation (using foliar 15N dilution assay). P2b-2Rgfp inoculation significantly promoted canola growth by increasing seedling length by 2-fold, biomass by 2.5-fold, and fixing 35% of its foliar N, respectively. P2b-2R inoculation also increased seedling length by 70%, biomass by 2-fold, and fixed 27% of N. Seedling biomass and length, and the amount of N fixed by P2b-2Rgfp-treated seedlings was significantly greater than the P2b-2R-treated seedlings. P2b-2R or P2b-2Rgfp inoculation also lead to an increase of pod mass (more than 50%), indicating that these strains might play a role in enhancing the yield of canola by acting as biofertilizer.


2003 ◽  
Vol 49 (6) ◽  
pp. 383-389 ◽  
Author(s):  
Zhinong Yan ◽  
M S Reddy ◽  
Joseph W Kloepper

Plant-growth-promoting rhizobacteria (PGPR) are used on crops most often as seed treatments; however, an alternative application method for transplanted vegetables is mixing PGPR into the soilless medium in which the transplants are grown. Studies were undertaken to compare root colonization and persistence of rifampicin-resistant mutants of PGPR strains Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, SE34r and 89B61r, on tomato as a function of application method. When the bacteria were incorporated into Promix(tm) soilless medium at log 6, 7, and 8 colony- forming units/g, populations of strain SE34r per gram of medium maintained the initial inoculum densities, while populations of 89B61r decreased approximately one to two orders of magnitude by 4 weeks after planting. The populations of each PGPR strain colonizing roots after application into the soilless medium showed a similar pattern at 6 weeks as that at 4 weeks after planting, with higher populations on the whole roots and lateral roots than on the taproots. Strain SE34r but not 89B61r moved upwards and colonized the phyllosphere when incorporated into the soilless medium. Following application as seed treatment, populations of SE34r were significantly higher on upper roots and on the taproot than were populations following application through the soilless medium. Conversely, populations were higher on lower roots and lateral roots following application through the soilless medium than were populations following application as seed treatment. While strain SE34 enhanced plant growth with application both to the medium and as seed treatment, the level of growth promotion was significantly greater with application in the soilless medium. The results indicate that PGPR can be successfully incorporated into soilless media in vegetable transplant production systems.Key words: rhizobacteria, plant colonization, Bacillus pumilus, Pseudomonas fluorescens.


2000 ◽  
Vol 46 (3) ◽  
pp. 229-236 ◽  
Author(s):  
H Bertrand ◽  
C Plassard ◽  
X Pinochet ◽  
B Touraine ◽  
P Normand ◽  
...  

A plant growth-promoting rhizobacterium belonging to the genus Achromobacter was isolated from the oilseed-rape (Brassica napus) root. Growth promotion bioassays were performed with oilseed rape seedlings in a growth chamber in test tubes containing attapulgite and mineral nutrient solution, containing NO3- as N source. The presence of this Achromobacter strain increased shoot and root dry weight by 22-33% and 6-21%, respectively. Inoculation of young seedlings with the Achromobacter bacteria induced a 100% improvement in NO3- uptake by the whole root system. Observations on the seminal root of seedlings 20 h after inoculation showed that there was an enhancement of both the number and the length of root hairs, compared to non-inoculated seedlings. Electrophysiological measurements of NO3- net flux with ion-selective microelectrodes showed that inoculation resulted in a specific increase of net nitrate flux in a root zone morphologically similar in inoculated and non-inoculated plants. The root area increased due to root hair stimulation by the Achromobacter bacteria, which might have contributed to the improvement of NO3- uptake by the whole root system, together with the enhancement of specific NO3- uptake rate. Moreover, inoculated plants showed increased potassium net influx and proton net efflux. Overall, the data presented suggest that the inoculation of oilseed-rape with the bacteria Achromobacter affects the mineral uptake.Key words: Brassica napus, plant growth-promoting rhizobacteria, Achromobacter sp., mineral uptake, root morphology.


1990 ◽  
Vol 45 (5) ◽  
pp. 478-481
Author(s):  
R. Hain ◽  
J. E. Thomzik

Abstract Triazine-resistant chloroplasts of the Canadian spring oilseed rape variety OAC Triton were transferred into four German winter oilseed rape lines and two cultivars of double-low quality by means of protoplast fusion. X-irradiation has been used to reduce the amount of nuclear D N A of the spring type cultivar and to promote cybrid formation. RFLP-analysis showed that some regenerants and their progeny carried both types of chloroplasts. In some instances regenerants and progeny containing mixtures of both chloroplasts not kept under selective conditions lost their triazine-resistant chloroplasts completely during further plant growth. Preliminary results of greenhouse and field experiments indicate that volunteer plants can be eliminated by application of 150-300 g/ha metribuzin (SencorR, Bayer AG) in a stand of triazine-resistant oilseed rape of double-low quality.


Sign in / Sign up

Export Citation Format

Share Document