Panoramic Vision System to Eliminate Driver’s Blind Spots using a Laser Sensor and Cameras

Author(s):  
Min Woo Park ◽  
Kyung Ho Jang ◽  
Soon Ki Jung
2013 ◽  
Vol 419 ◽  
pp. 774-777
Author(s):  
Ji Ming Yi ◽  
Min Han

The welding direction of robot and existing problems, the groove plate is difficult to realize automatic welding robot problem, methods using laser sensor and a binocular vision system combines, image and depth information extraction plate groove groove, realize accurate 3D reconstruction.


2019 ◽  
Vol 20 (8) ◽  
pp. 490-497
Author(s):  
V. P. Noskov ◽  
I. O. Kiselev

The actual tasks of 3D-reconstruction of the industrial-urban environment and navigation models are considered by solving the identification of textured linear objects in the process of movement according to the onboard complex and technical vision system consisting of a mutually adjusted 3D laser sensor and a video camera with a common viewing area. For a complete solution of the navigation task (determination of three linear and three angular coordinates of the control object), it is necessary to select and identify at least three mutually non-parallel flat objects in the process of moving in a sequence of point clouds formed by a 3D laser sensor. In the case of the allocation of less than three flat objects (for example, in environments subjected to destruction), the navigation problem is not fully solved (not all coordinates are determined unambiguously, and some coordinates are related by linear or non-linear dependencies). In these cases, it is proposed to additionally use the texture of the selected flat objects formed by the video camera. In the paper is given the analysis of the features of the solution of the navigation problem is carried out depending on the number of allocated and identifiable textured linear objects in the current integrated images and algorithms for solving the navigation problem are evaluated for selecting and identifying the process of movement of one textured linear object and of two textured non-parallel linear objects. It is shown that in the first case, the use of texture makes it possible to reduce the solution of the navigational problem to a three-dimensional one, and in the second case to a one-dimensional optimization problem (finding the global optimum of a functional three and one variable, respectively). The proposed algorithms for processing complexed images provide a complete solution to the navigation task even if less than three linear objects are selected, which significantly increases the reliability of solving the navigation task and building an environmental model even in industrial-urban environments that have been destroyed, and therefore, the reliability and survivability of the ground ones and airborne robotic tools in autonomous modes of movement. The results of the corresponding software and hardware solutions in real industrial-urban environments, confirmed the accuracy and effectiveness of the proposed algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4708
Author(s):  
Xiaodong Guo ◽  
Zhoubo Wang ◽  
Wei Zhou ◽  
Zhenhai Zhang

This paper summarized the research status, imaging model, systems calibration, distortion correction, and panoramic expansion of panoramic vision systems, pointed out the existing problems and put forward the prospect of future research. According to the research status of panoramic vision systems, a panoramic vision system with single viewpoint of refraction and reflection is designed. The systems had the characteristics of fast acquisition, low manufacturing cost, fixed single-view imaging, integrated imaging, and automatic switching depth of field. Based on these systems, an improved nonlinear optimization polynomial fitting method is proposed to calibrate the monocular HOVS, and the binocular HOVS is calibrated with the Aruco label. This method not only improves the robustness of the calibration results, but also simplifies the calibration process. Finally, a real-time method of panoramic map of multi-function vehicle based on vcam is proposed.


2014 ◽  
Vol 668-669 ◽  
pp. 1098-1101
Author(s):  
Jian Wang ◽  
Zhen Hai Zhang ◽  
Ke Jie Li ◽  
Hai Yan Shao ◽  
Tao Xu ◽  
...  

Catadioptric panoramic vision system has been widely used in many fields, and also plays a very important role in environment perception of unmanned platform especially. However, the resolution of system is not very high, usually less than 5 million pixels at present. Even if the resolution is high, but the unwrapping and rectification of panoramic video is carried out off-line. Further, the system is also applied in stationary state or low stationary moving. This paper proposes an unwrapping and rectification method based on high-resolution catadioptric panoramic vision system used during non-stationary moving. It can segment dynamic circular mark region accurately and get the coordinates of center of circular image real-timely, shorten the time of image processing, meanwhile the coordinates of center and radius of the circular mark region would be obtained, so the image distortion caused by inaccurate center coordinates can be reduced. During image rectification, after achieving radial distortions parameters (K1, K2, K3), decentering distortions parameters (P1, P2), and the correction factor that has no physical meanings, we can used those for fitting the rectification polynomial, so the panoramic video can be rectified without distortion.


Sign in / Sign up

Export Citation Format

Share Document