scholarly journals Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation

2015 ◽  
Vol 53 (2) ◽  
pp. 1130-1139 ◽  
Author(s):  
Ilaria Benucci ◽  
Claudio Lombardelli ◽  
Katia Liburdi ◽  
Giuseppe Acciaro ◽  
Matteo Zappino ◽  
...  
2021 ◽  
Vol 407 ◽  
pp. 127065
Author(s):  
Robert D. Franklin ◽  
Joshua A. Whitley ◽  
Adam A. Caparco ◽  
Bettina R. Bommarius ◽  
Julie A. Champion ◽  
...  

2017 ◽  
Vol 224 ◽  
pp. 292-297 ◽  
Author(s):  
Juntao Xu ◽  
Changsheng Liu ◽  
Meng Wang ◽  
Lei Shao ◽  
Li Deng ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Inma Arenas ◽  
Miguel Ribeiro ◽  
Luís Filipe-Ribeiro ◽  
Rafael Vilamarim ◽  
Elisa Costa ◽  
...  

In this work, the effect of pre-fermentative skin maceration (PFSM) on the chemical composition of the macromolecular fraction, polysaccharides and proteins, phenolic compounds, chromatic characteristics, and protein stability of Albariño monovarietal white wines was studied. PFSM increased the extraction of phenolic compounds and polysaccharides and reduced the extraction of pathogenesis-related proteins (PRPs). PFSM wine showed significantly higher protein instability. Sodium and calcium bentonites were used for protein stabilisation of wines obtained with PFSM (+PFSM) and without PFSM (−PFSM), and their efficiencies compared to fungal chitosan (FCH) and k-carrageenan. k-Carrageenan reduced the content of PRPs and the protein instability in both wines, and it was more efficient than sodium and calcium bentonites. FCH was unable to heat stabilise both wines, and PRPs levels remained unaltered. On the other hand, FCH decreased the levels of wine polysaccharides by 60%. Sodium and calcium bentonite also decreased the levels of wine polysaccharides although to a lower extent (16% to 59%). k-Carrageenan did not affect the wine polysaccharide levels. Overall, k-carrageenan is suitable for white wine protein stabilisation, having a more desirable impact on the wine macromolecular fraction than the other fining agents, reducing the levels of the wine PRPs without impacting polysaccharide composition.


1994 ◽  
Vol 49 (24) ◽  
pp. 4725-4747 ◽  
Author(s):  
E.P.S. Schouten ◽  
P.C. Borman ◽  
K.R. Westerterp

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hsiao-Ching Chen ◽  
Hen-Yi Ju ◽  
Tsung-Ta Wu ◽  
Yung-Chuan Liu ◽  
Chih-Chen Lee ◽  
...  

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in atert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were83.31±2.07% and82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.


Sign in / Sign up

Export Citation Format

Share Document