scholarly journals Groundwater vulnerability assessment with using GIS in Hamadan–Bahar plain, Iran

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Balal Oroji

Abstract Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. It has been recognized for its ability to delineate areas that are more likely than others to become contaminated as a result of anthropogenic activities near the earth’s surface. The main methods of mapping and assessing intrinsic vulnerability in porous media are the following: SI, GOD, SINTACS and DRASTIC. The basic purpose of these maps is to divide an area into more classes, each of which will represent a different dynamic for a specific purpose and use. These models have been used to map groundwater vulnerability to pollution in Hamadan–Bahar aquifer. The results showed in models of DRASTIC, SI, GOD and SINTACS, respectively, 7.1, 44.21, 29.56 and 20.16 percent of the areas are high potential vulnerabilities. According to the model DRASTIC at study area, 33.6% of has a low class of groundwater vulnerability to contamination, whereas a total of 29.4% of the study area has a moderate vulnerability. The final results indicate that the aquifer system in the interested area is relatively protected from contamination on the groundwater surface. The correlation between models shows that DRASTIC model has the highest CI, which is 141, and the GOD model has the highest CI, which is 139. Also, the highest CI for SINTACS and SI is 137 and 136, respectively. Therefore, DRASTIC model is the best model among these models for predicting groundwater vulnerability in Hamadan–Bahar plain aquifer.

Author(s):  
Stefania Stevenazzi ◽  
Marco Masetti ◽  
Giovanni Pietro Beretta

Groundwater is among the most important freshwater resources. Worldwide, aquifers are experiencing an increasing threat of pollution from urbanization, industrial development, agricultural activities and mining enterprise. Thus, practical actions, strategies and solutions to protect groundwater from these anthropogenic sources are widely required. The most efficient tool, which helps supporting land use planning, while protecting groundwater from contamination, is represented by groundwater vulnerability assessment. Over the years, several methods assessing groundwater vulnerability have been developed: overlay and index methods, statistical and process-based methods. All methods are means to synthesize complex hydrogeological information into a unique document, which is a groundwater vulnerability map, useable by planners, decision and policy makers, geoscientists and the public. Although it is not possible to identify an approach which could be the best one for all situations, the final product should always be scientific defensible, meaningful and reliable. Nevertheless, various methods may produce very different results at any given site. Thus, reasons for similarities and differences need to be deeply investigated. This study demonstrates the reliability and flexibility of a spatial statistical method to assess groundwater vulnerability to contamination at a regional scale. The Lombardy Plain case study is particularly interesting for its long history of groundwater monitoring (quality and quantity), availability of hydrogeological data, and combined presence of various anthropogenic sources of contamination. Recent updates of the regional water protection plan have raised the necessity of realizing more flexible, reliable and accurate groundwater vulnerability maps. A comparison of groundwater vulnerability maps obtained through different approaches and developed in a time span of several years has demonstrated the relevance of the continuous scientific progress, recognizing strengths and weaknesses of each research.


2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.


Author(s):  
Halake Guyo Rendilicha

Groundwater represents 95% of the world’s unfrozen freshwater. The use of groundwater has significantly increased over the past 50 years and is expected to rise in future due to its high reliability during drought seasons, good quality, generally modest development costs and continuous depletion of surface water. Groundwater pollution is becoming a major threat to fresh groundwater availability and sustainability. The deteriorating groundwater quality and increasing contamination poses detrimental risk to human health and ecosystem in many ways, thereby necessitating the need to study the groundwater vulnerability assessment as a preventive strategy to protect the groundwater from surface pollution. The concept of groundwater vulnerability assessment is dated back in 1970s and applied in many developed countries as an environmental tool used for proper land use planning and decision making without jeopardizing groundwater quality.  This paper is a detail review of available literature on the study of groundwater vulnerability assessment in Kenya. The paper revealed that, the vulnerability assessment concept has not been applied as a mechanism to prevent groundwater pollution, hence rarely used in guiding land use planning in Kenya. This review brings to limelight the importance of groundwater vulnerability assessment in management and protection of groundwater resources in Kenya.*Corresponding author; Email:[email protected] Mobile: 0710953283.1. Soil, Water and Environmental Engineering Department Jomo Kenyatta University of Agriculture and Technology, Kenya


2020 ◽  
Vol 53 (2E) ◽  
pp. 12-24
Author(s):  
Madyan Al-Gburi

Several studies and assessments have been conducted of areas exposed to pollution, especially areas that contain aquifer. The final extraction of the vulnerability map of the groundwater was constructed through the use of the DRASTIC method by applying the linear equation of the seven coefficients in the Arc GIS software program (Version 10.4). The aim of the study to assess aquifer vulnerability to pollution. Results, vulnerability map range between 75-126 (very low, low, and medium), the study area consists of very low and low vulnerability, except some areas medium vulnerability close to the center of the sub-basin in the standard vulnerability map (s) and 91-149 (very low, low, and medium) for the agriculture or pesticide vulnerability map (p), the medium vulnerability occupies a greater area the center of the sub-basin.


2021 ◽  
Author(s):  
Ata Omer Salih ◽  
Diary Ali Al-Manmi

Abstract Groundwater has never been heavily relied on as a water source in Northern Iraq as it has been in the last two decades due to the rapid and often unplanned urbanization, industrial and agricultural projects. This paper attempts to present a concise groundwater vulnerability assessment of Rania basin to the local and regional planning authorities to ensure a more sustainable development in the area. The focus of the study is the Rania basin, which is a part of Dokan sub-basin in North East Iraq. The initial groundwater vulnerability assessment is mapped with standard DRASTIC model. It is then modified by adding “Lineament Density Index” to the original seven DRASTIC parameters due to the previously established close relationship between flow and yield of groundwater with lineament. The area is categorized into five vulnerability index zones of; very low (26%), low (32%), medium (31%), high (11%) and very high (0.012%). The modified model offeres a slightly different vulnerability classification of; very low (16.61%), low (35.45%), medium (30.32), high (17.57) and very high (0.05%). Measured Nitrate concentration is used to validate the assessment results. A progressive increase in nitrate concentration somehow reflects the different vulnerability zones identified by the DRASTIC models in the area. Samples of wet season show 15.96 mg/l, 17.68 mg/l and 20.1 mg/l for very low vulnerability, low vulnerability and medium vulnerability zones when classified by modified DRASTIC model.


Sign in / Sign up

Export Citation Format

Share Document