Groundwater Vulnerability Mapping in Urbanized Hydrological System Using Modified Drastic Model and Sensitivity Analysis

2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.

2021 ◽  
Author(s):  
Mohammad Reza Goodarzi ◽  
Amirreza R. Niknam ◽  
Vahid Jamali ◽  
Hamid Reza Pourghasemi ◽  
Mahboobeh Kiani-Harchegani

Abstract In arid and semi-arid regions such as Iran, groundwater is more important for humans and ecosystems than surface water. Different models of groundwater vulnerability assessment can be used to better manage water resources. The purpose of this study is to evaluate the qualitative vulnerability of groundwater resources in the Birjand Plain aquifer using the DRASTIC model and 7 hydrogeological components. DRASTIC model was also modified by adding a land use component (MDRASTIC) based on Analytical Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) methods. After calculating the vulnerability index, the vulnerability of each method was mapped and the final index obtained from each method was classified into 4 different categories. Nitrate concentration was used to confirm the results and to analyze the sensitivity of a single parameter. Sensitivity analysis showed that the groundwater vulnerability is mainly affected by water depth and land use. To validate each of the models, their correlation with nitrate concentration was calculated and compared. To determine the correlation coefficient, simple linear regression method was performed and the Pearson and Spearman methods were used. According to the obtained Pearson correlation results, the DRASTIC, MDRASTIC, MDRASTIC-AHP, and MDRASTIC-FAHP models resulted in values of 0.550, 0.680, 0.778, and 0.794respectively. The results show a good correlation between the modified DRASTIC-FAHP model and nitrate concentration as an indicator of groundwater pollution.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Balal Oroji

Abstract Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. It has been recognized for its ability to delineate areas that are more likely than others to become contaminated as a result of anthropogenic activities near the earth’s surface. The main methods of mapping and assessing intrinsic vulnerability in porous media are the following: SI, GOD, SINTACS and DRASTIC. The basic purpose of these maps is to divide an area into more classes, each of which will represent a different dynamic for a specific purpose and use. These models have been used to map groundwater vulnerability to pollution in Hamadan–Bahar aquifer. The results showed in models of DRASTIC, SI, GOD and SINTACS, respectively, 7.1, 44.21, 29.56 and 20.16 percent of the areas are high potential vulnerabilities. According to the model DRASTIC at study area, 33.6% of has a low class of groundwater vulnerability to contamination, whereas a total of 29.4% of the study area has a moderate vulnerability. The final results indicate that the aquifer system in the interested area is relatively protected from contamination on the groundwater surface. The correlation between models shows that DRASTIC model has the highest CI, which is 141, and the GOD model has the highest CI, which is 139. Also, the highest CI for SINTACS and SI is 137 and 136, respectively. Therefore, DRASTIC model is the best model among these models for predicting groundwater vulnerability in Hamadan–Bahar plain aquifer.


2021 ◽  
Author(s):  
Yongxiang Zhang ◽  
Ruitao Jia ◽  
Jin Wu ◽  
Huaqing Wang ◽  
Zhuoran Luo

Groundwater vulnerability assessment is a basic work for groundwater exploitation and protection. The Chaoyang district of Beijing was selected and investigated in this study. Groundwater vulnerability index system in Chaoyang district was constructed based on hydrogeological settings of local region, the human influence and the DRASTIC model. The comprehensive vulnerability assessment was carried out with weights of 0.4 and 0.6 for the intrinsic vulnerability and the specific vulnerability, respectively. In this study, total 9 hydrogeological parameters were considered, and the diagram of groundwater vulnerability assessment results in Chaoyang District was obtained by using DRASTIC index and overlay weighted method. The groundwater quality is poor in the southwest of Chaoyang District. The correlation analysis between total hardness, total dissolved solids and vulnerability results was carried out, and the correlation results were 06 and 0.7, respectively. The area with high groundwater vulnerability is also the regions with serious groundwater pollution, indicating that the assessment results are objective and reasonable, which can provide prevention and control of groundwater reference for the management department in the future, so as to reduce the risk of pollution.


2021 ◽  
Author(s):  
Zaharatu Babika ◽  
Thomas Kjeldsen

<p>Among the numerous groundwater vulnerability assessment methodologies, the geographical information system-based DRASTIC model is the most widely used and have been found to achieve reliable results even in complex areas. However, hydrocarbon contamination cause by Anthropogenic activities has not previously being considered within these groundwater vulnerability assessment model.  This study proposes a new flexible approach for optimizing the identification of input data layers that can help identify vulnerability to hydrocarbon contamination through the principles of sensitivity analysis.The single-parameter (SA ) and map removal analysis(MA)  was employed to obtain effective weights for the  modified model, which were then implemented to improve efficacy Multi-criteria evaluation (MCE) techniques are part of a decision-making process for assigning weights of significance to each input layer to the DRASTIC model. The application is illustrated through a case study focussing on the city of Kano located in Northern Nigeria within west Africa .DRASTIC index model have seven paramters ,Depth of water table,net reharge ,Aquifer media ,soil media, Topography ,impact of vadose zone and hydrlauic conductivty.  The most sensitive parameters are depth of water (22.92%), net recharge, (25.98), impact of Vadose zone (27.07%),  The borehole data includes groundwater samples that were analysed for benzene, ethylbenzene and xylene (Betex) components of crude oil.  Accordingly, the results presented the highest hydrocarbon content (51.66477mg/l) in Dala (western Kano) due to the significantly high number of hydrocarbon sources such as under-storage tanks within the petroleum stations and automobile garages.</p>


Author(s):  
M. Nakhostinrouhi ◽  
M. H. Rezaei Moghaddam

Abstract. Groundwater resources play an important role not only in providing drinking water but also in irrigation, industry and power generation. In general, groundwater is a part of the water cycle in nature that can be collected by wells, qanats, drains, or natural springs. In this research, the potential of groundwater vulnerability in Ajabshir plain, located in the Southwest of East Azerbaijan Province and Southeast of the Urmia Lake, Iran, is investigated using 7 hydrogeological parameters as well as land-use criterion. Depth to water map is provided using 26 boreholes. Twenty-seven drilling points are also used in generating aquifer media and impact of vadose zone maps. After providing and ranking all layers, they are multiplied by appropriate weights and overlaid to produce vulnerability map. Modified-DRASTIC model is applied to achieve the aim. According to the results, an approximately large part of the aquifer (29 percent), mostly located in the west of the plain, is covered with moderate vulnerability class. Spearman correlation coefficient is calculated 0.63 between the vulnerability and land use maps.


Sign in / Sign up

Export Citation Format

Share Document