scholarly journals Contamination transport model by coupling analytic element and point collocation methods

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Mohammadi ◽  
M. Ghaeini-Hessaroeyeh ◽  
E. Fadaei-Kermani

AbstractThe prediction of contaminant transport in porous media is an important problem in order to prevent the pollution propagation in groundwater. The present model is developed by coupling two mesh-free approaches in order to overcome the restrictions of mesh-dependent methods. In this model, the ground water flow model is developed by analytic-element method and the contaminant transport model is developed by point collocation method in an unconfined aquifer. The model was developed and implemented by Python object-oriented programming language. A particle swarm optimization algorithm has been also utilized to calibrate the model. The model was applied for contamination transport in Astaneh-Kuchesfahan groundwater in north of Iran. Comparison of the model results with the observed data represents a reasonable agreement and capability of the present model in contaminant transport modeling. Moreover, the calculated value for coefficient of determination (R2 = 0.89) indicates that the calibrated parameters are acceptable.

1999 ◽  
Author(s):  
Bohdan Cybyk ◽  
Jay Boris ◽  
Theodore Young, Jr. ◽  
Charles Lind ◽  
Alexandra Landsberg

2007 ◽  
Vol 12 (3) ◽  
pp. 329-343 ◽  
Author(s):  
A. J. Chamkha

A one-dimensional advective-dispersive contaminant transport model with scale-dependent dispersion coefficient in the presence of a nonlinear chemical reaction of arbitrary order is considered. Two types of variations of the dispersion coefficient with the downstream distance are considered. The first type assumes that the dispersivity increases as a polynomial function with distance while the other assumes an exponentiallyincreasing function. Since the general problem is nonlinear and possesses no analytical solutions, a numerical solution based on an efficient implicit iterative tri-diagonal finitedifference method is obtained. Comparisons with previously published analytical and numerical solutions for special cases of the main transport equation are performed and found to be in excellent agreement. A parametric study of all physical parameters is conducted and the results are presented graphically to illustrate interesting features of the solutions. It is found that the chemical reaction order and rate coefficient have significant effects on the contaminant concentration profiles. Furthermore, the scale-dependent polynomial type dispersion coefficient is predicted to obtain significant changes in the contaminant concentration at all dimensionless time stages compared with the constant dispersion case. However, relatively smaller changes in the concentration level are predicted for the exponentially-increasing dispersion coefficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


Sign in / Sign up

Export Citation Format

Share Document