scholarly journals A new approach to finding effective parameters controlling the performance of multi-stage fractured horizontal wells in low-permeability heavy-oil reservoirs using RSM technique

2020 ◽  
Vol 10 (8) ◽  
pp. 3569-3586
Author(s):  
Armin Shirbazo ◽  
Jalal Fahimpour ◽  
Babak Aminshahidy

Abstract The application of multi-stage fractured horizontal well (MSFHW) due to its costly operation necessitates optimization of associated fracture parameters to ensure its economic success. In comparison to significant number of studies dedicated to use of MSFHWs for shale gas reservoirs, there are only few researches available for oil systems. This study explores the optimum criteria for a number of important fracture parameters in low-permeability heavy-oil systems. For this purpose, a response surface methodology (RSM) was employed to examine the simultaneous effect of four fracture parameters, including the number of fracture stages, fracture length, fracture width and fracture conductivity, on well productivity. The evaluations were conducted on two homogeneous and heterogeneous permeability systems. The optimization of fracture parameters was also performed on an economic basis by utilizing the net present value (NPV) concept. Useful charts were also generated providing practical insights into the individual and combinational effects of fracture parameters on well performance. The results from this study demonstrated that the fracture conductivity and the number of fracture stages were, respectively, the first two important parameters controlling the well productivity for rock systems with higher permeability. However, when rock texture became tighter, the number, and to a lesser extent the length, of fractures exhibited more evident role on production improvement, especially in the case of heterogeneous reservoirs. The results also underlined the significance of economic considerations, in particular, when determining the optimum fracture length and number of fracture stages.

2013 ◽  
Vol 457-458 ◽  
pp. 692-698
Author(s):  
Wen Jiang Xu ◽  
Yong Quan Hu ◽  
Jin Zhou Zhao ◽  
Zhi Qiang Li

Horizontal well technology has become an important technological means for offshore oilfield exploitation, but at present, most of the fracture parameters optimization of horizontal well fracturing are based on the single wells productivity after fracturing and pay less attention to consider the impact of injection wells.Therefore, aiming at injection and production development mode of BZ oilfield horizontal wells after fracturing, Integral fracturing physical model and productivity forecast mathematical model of horizontal well for the purpose of improving integrated exploitation benefit of the block is established respectively.Combining with reservoir parameters of BZ oilfield, a corresponding numerical simulator is developed by means of solving mathematical model to forecast production performance of oil well with different fracture number, fracture length, fracture conductivity. The best fracture parameters are obtained through analyzing the effect of fracture parameters on accumulative oil production, which provides theoretical foundation for integral fracturing optimization design of horizontal well of BZ oilfields, and has vital site guiding significance.


2014 ◽  
Vol 527 ◽  
pp. 81-87
Author(s):  
Yi Ning Wang ◽  
Xiao Dong Wu ◽  
Rui He Wang ◽  
Feng Peng Lai ◽  
Bei Lin Qi ◽  
...  

The vertical fracture was asymmetrical about the wellbore or two wings of a fracture are not certainly in a line for the complex geo-stress in the possession of fracturing of the gas reservoirs. In view of the low permeability reservoir after fracturing developing the asymmetrical vertical fracture and non-coplanar fractures, based on the non-steady seepage theory, using the potential function theory, superimposition principle and numerical analysis method, a performance prediction model for the vertical fracture in low-permeability gas reservoirs was deduced with pressure drop superposition principle. The production decline laws were analyzed by practical cases. The result shows that the initial production of the vertical fracture is relatively high but soon followed by a sharp decline. Then, the production keeps in a relatively stable state and declines slowly in the middle and later. The fracture asymmetry factor has little effect on the gas well productivity. The non-coplanar angles have greater effect on the oil well productivity in the initial stage. The more the fracture length and the bigger the flow conductivity, the higher the oil well production and the faster the decline rate will be. However, the increase amplitude will be getting smaller and smaller along with the fracture length and flow conductivity.


2014 ◽  
Vol 886 ◽  
pp. 452-455
Author(s):  
Hai Yong Zhang ◽  
Shun Li He ◽  
Guo Hua Luan ◽  
Qiao Lu ◽  
Shao Yuan Mo ◽  
...  

Multiple fractures are needed by hydraulic fracturing in order to improve the horizontal well productivity of a single well in tight gas reservoir. The calculation accuracy of productivity influences on the fracturing optimization results and the success ratio and effectiveness of fracturing treatment. This work focuses on analyzing the influence of fracture parameters on fractured horizontal well productivity in tight gas reservoir through establishing a productivity prediction model of fractured horizontal well, considering the interference between fracture and fracture and the wellbore pressure drop. Results show that the fracture parameters, such as fracture number, fracture interval, fracture conductivity and fracture length, have different influences on the productivity of fractured horizontal well and thus, the effects of fracture parameters should be taken into account when designing the fracturing treatment.


2018 ◽  
Author(s):  
Mohammed Taha Al-Murayri ◽  
Eman Hadad Fadli ◽  
Fawziya Mohammad Al-Shati ◽  
Ali Qubian ◽  
Zhitao Li ◽  
...  

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 499-508
Author(s):  
Chuanzhi Cui ◽  
Zhongwei Wu ◽  
Zhen Wang ◽  
Jingwei Yang ◽  
Yingfei Sui

AbstractPredicting the productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages has an important significance for the development and optimization of reservoirs. Taking the reservoir heterogeneity and uneven distribution of the remaining oil into consideration, a novel method for predicting the transient productivity of fractured five-spot patterns in low permeability reservoirs at high water cut stages is proposed by using element analysis, the flow tube integration method, and the mass conservation principle. This new method is validated by comparing with actual production data from the field and the results of a numerical simulation. Also, the effects of related parameters on transient productivity are analyzed. The results show that increasing fracture length, pressure difference and reservoir permeability correspond to an increasing productivity. The research provides theoretical support for the development and optimization of fractured five-spot patterns at the high water cut stage.


2014 ◽  
Vol 962-965 ◽  
pp. 489-493
Author(s):  
Zhi Qiang Li ◽  
Yong Quan Hu ◽  
Wen Jiang Xu ◽  
Jin Zhou Zhao ◽  
Jian Zhong Liu ◽  
...  

This article presents a new exploitation method based on the same fractured horizontal well with fractures for injection or production on offshore low permeability oilfields for the purpose of adapting to their practical situations and characteristics, which means fractures close to the toe of horizontal well used for injecting water and fractures near the heel of horizontal well used for producing oil. According to proposed development mode of fracturing, relevant physical model is established, Then reservoir numerical simulation method has been applied to study the effect of arrangement pattern of injection and production fractures, fracture conductivity, fracture length on oil production. Research indicates cumulative oil production is much higher by employing the middle fracture for injecting water compared with using the remote one, suggesting that the middle fracture adopted for injecting water, and hydraulic fracture length and conductivity have been optimized. The proposed development pattern of a staged fracturing for horizontal wells with some fractures applied for injecting water and others for production based on the same horizontal well provides new thoughts for offshore oilfields exploitation.


Sign in / Sign up

Export Citation Format

Share Document