scholarly journals Analysis of bottom hole pressure of unsteady flow in dual-medium fracturing vertical well

2021 ◽  
Vol 11 (3) ◽  
pp. 1393-1401
Author(s):  
Liu Hailong

AbstractIn order to improve the validity of bottom hole pressure model, and simplify its calculation process, a mathematical model of instantaneous pressure for unsteady flow was established by considering the crossflow between the fractures and matrix. Different conditions, including the reservoir top has constant pressure, were considered. The basis for obtaining bottom hole pressure is to solve diffusivity equation with the integration of axisymmetric transformation and similar methods, which is presented for the first time. Different from the traditional method of using the Green’s function and source solution, this paper uses Laplace transformation, axisymmetric transformation and similar methods, separation of variables to obtain the analytical solution of Laplace domain. Then, the Stephenson Numerical method was used to obtain the numerical solution in a real domain. The results of this method agree with the numerical simulations and actual test data, suggesting the validity and accuracy of this method. Finally, the sensitivity analysis revealed that the pressure curve can be divided into eight stages, namely, early linear flow, continuous flow transition section, fracture linear flow, formation linear flow, crossflow, transitional flow, pseudo-radial flow and boundary control flow. The advantage of the analytical solution utilized in this paper is to incorporate exchange coefficient and skin factor efficiently, providing a theoretical basis for optimizing production pressure difference and determining the reasonable productivity.

2020 ◽  
pp. 014459872096415
Author(s):  
Jianlin Guo ◽  
Fankun Meng ◽  
Ailin Jia ◽  
Shuo Dong ◽  
Haijun Yan ◽  
...  

Influenced by the complex sedimentary environment, a well always penetrates multiple layers with different properties, which leads to the difficulty of analyzing the production behavior for each layer. Therefore, in this paper, a semi-analytical model to evaluate the production performance of each layer in a stress-sensitive multilayer carbonated gas reservoir is proposed. The flow of fluids in layers composed of matrix, fractures, and vugs can be described by triple-porosity/single permeability model, and the other layers could be characterized by single porosity media. The stress-sensitive exponents for different layers are determined by laboratory experiments and curve fitting, which are considered in pseudo-pressure and pseudo-time factor. Laplace transformation, Duhamel convolution, Stehfest inversion algorithm are used to solve the proposed model. Through the comparison with the classical solution, and the matching with real bottom-hole pressure data, the accuracy of the presented model is verified. A synthetic case which has two layers, where the first one is tight and the second one is full of fractures and vugs, is utilized to study the effects of stress-sensitive exponents, skin factors, formation radius and permeability for these two layers on production performance. The results demonstrate that the initial well production is mainly derived from high permeable layer, which causes that with the rise of formation permeability and radius, and the decrease of stress-sensitive exponents and skin factors, in the early stage, the bottom-hole pressure and the second layer production rate will increase. While the first layer contributes a lot to the total production in the later period, the well bottom-hole pressure is more influenced by the variation of formation and well condition parameters at the later stage. Compared with the second layer, the scales of formation permeability and skin factor for first layer have significant impacts on production behaviors.


2013 ◽  
Vol 37 ◽  
pp. 3291-3298 ◽  
Author(s):  
Mingze Liu ◽  
Bing Bai ◽  
Xiaochun Li

2018 ◽  
Vol 10 (8) ◽  
pp. 3309-3317
Author(s):  
Ping Xiong ◽  
Wang-shui Hu ◽  
Hai-xia Hu ◽  
Hailong Liu

Abstract In this paper, whether the coal fines can be induced by shear failure during drainage process has been discussed in detail. By coupling with the percolation theory, the elasticity mechanics were used to construe the extra stresses in the formation surrounding with the hydraulic fracture. The safe window of the bottom hole pressure was also calculated from the failure envelope. The research shows that the formation pressure on the fracture surface of the coal seam is negatively related with the bottom hole pressure, and the induced stress is positively related with the bottom hole pressure during the drainage process of fractured CBM wells. The pore pressure around the fracture changed due to pore-elastic effects, which also caused a significant change of the in situ stresses. In order to avoid the breakout of the coal seam around hydraulic fracture during drainage process, the model of the reasonable bottom hole pressure is also built.


Sign in / Sign up

Export Citation Format

Share Document