scholarly journals Crystal structure of the African swine fever virus structural protein p35 reveals its role for core shell assembly

2020 ◽  
Vol 11 (8) ◽  
pp. 600-605
Author(s):  
Guobang Li ◽  
Dan Fu ◽  
Guangshun Zhang ◽  
Dongming Zhao ◽  
Mingyu Li ◽  
...  
Author(s):  
Kefang Liu ◽  
Yumin Meng ◽  
Yan Chai ◽  
Linjie Li ◽  
Huan Sun ◽  
...  

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Guobang Li ◽  
Xiaoxia Liu ◽  
Mengyuan Yang ◽  
Guangshun Zhang ◽  
Zhengyang Wang ◽  
...  

ABSTRACT African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the “core domain” and the N-terminal “arm domain.” The “arm domain” contains the residues from M1 to N83, and the “core domain” contains the residues from N84 to A273. A structure analysis reveals that the “core domain” shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the “arm domain” is unique to ASFV. Further, experiments indicated that the “arm domain” plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen. IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique “arm domain” has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Fenglin Guo ◽  
Yuejun Shi ◽  
Mengfang Yang ◽  
Yilin Guo ◽  
Zhou Shen ◽  
...  

2006 ◽  
Vol 80 (7) ◽  
pp. 3157-3166 ◽  
Author(s):  
Irene Rodríguez ◽  
Modesto Redrejo-Rodríguez ◽  
Javier M. Rodríguez ◽  
Alí Alejo ◽  
José Salas ◽  
...  

ABSTRACT Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.


2001 ◽  
Vol 75 (15) ◽  
pp. 6758-6768 ◽  
Author(s):  
Germán Andrés ◽  
Ramón Garcı́a-Escudero ◽  
Eladio Viñuela ◽  
Marı́a L. Salas ◽  
Javier M. Rodrı́guez

ABSTRACT This report examines the role of African swine fever virus (ASFV) structural protein pE120R in virus replication. Immunoelectron microscopy revealed that protein pE120R localizes at the surface of the intracellular virions. Consistent with this, coimmunoprecipitation assays showed that protein pE120R binds to the major capsid protein p72. Moreover, it was found that, in cells infected with an ASFV recombinant that inducibly expresses protein p72, the incorporation of pE120R into the virus particle is dependent on p72 expression. Protein pE120R was also studied using an ASFV recombinant in which E120R gene expression is regulated by the Escherichia coli lacrepressor-operator system. In the absence of inducer, pE120R expression was reduced about 100-fold compared to that obtained with the parental virus or the recombinant virus grown under permissive conditions. One-step virus growth curves showed that, under conditions that repress pE120R expression, the titer of intracellular progeny was similar to the total virus yield obtained under permissive conditions, whereas the extracellular virus yield was about 100-fold lower than in control infections. Immunofluorescence and electron microscopy demonstrated that, under restrictive conditions, intracellular mature virions are properly assembled but remain confined to the replication areas. Altogether, these results indicate that pE120R is necessary for virus dissemination but not for virus infectivity. The data also suggest that protein pE120R might be involved in the microtubule-mediated transport of ASFV particles from the viral factories to the plasma membrane.


Virology ◽  
1997 ◽  
Vol 229 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Luisa Martinez-Pomares ◽  
Carmen Simon-Mateo ◽  
Carlos Lopez-Otin ◽  
Eladio Viñuela

2020 ◽  
Vol 532 (1) ◽  
pp. 108-113
Author(s):  
Jian-Wen Huang ◽  
Du Niu ◽  
Ke Liu ◽  
Qian Wang ◽  
Lixin Ma ◽  
...  

2008 ◽  
Vol 89 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David A. G. Chapman ◽  
Vasily Tcherepanov ◽  
Chris Upton ◽  
Linda K. Dixon

The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8–10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document