scholarly journals Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates

2008 ◽  
Vol 89 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David A. G. Chapman ◽  
Vasily Tcherepanov ◽  
Chris Upton ◽  
Linda K. Dixon

The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8–10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.

2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Charles Masembe ◽  
Vattipally B. Sreenu ◽  
Ana Da Silva Filipe ◽  
Gavin S. Wilkie ◽  
Peter Ogweng ◽  
...  

Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX.


2006 ◽  
Vol 80 (7) ◽  
pp. 3157-3166 ◽  
Author(s):  
Irene Rodríguez ◽  
Modesto Redrejo-Rodríguez ◽  
Javier M. Rodríguez ◽  
Alí Alejo ◽  
José Salas ◽  
...  

ABSTRACT Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.


Virus Genes ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Richard P. Bishop ◽  
Clare Fleischauer ◽  
Etienne P. de Villiers ◽  
Edward A. Okoth ◽  
Marisa Arias ◽  
...  

2006 ◽  
Vol 80 (23) ◽  
pp. 11456-11466 ◽  
Author(s):  
Carolina Epifano ◽  
Jacomine Krijnse-Locker ◽  
María L. Salas ◽  
José Salas ◽  
Javier M. Rodríguez

ABSTRACT The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus morphogenesis. We show that protein pB438L associates with membranes during the infection, behaving as an integral membrane protein. Using a recombinant ASFV that inducibly expresses protein pB438L, we have determined that this structural protein is essential for the formation of infectious virus particles. In the absence of the protein, the virus assembly sites contain, instead of icosahedral particles, large aberrant tubular structures of viral origin as well as bilobulate forms that present morphological similarities with the tubules. The filamentous particles, which possess an aberrant core shell domain and an inner envelope, are covered by a capsid-like layer that, although containing the major capsid protein p72, does not acquire icosahedral morphology. This capsid, however, is to some extent functional, as the filamentous particles can move from the virus assembly sites to the plasma membrane and exit the cell by budding. The finding that, in the absence of protein pB438L, the viral particles formed have a tubular structure in which the icosahedral symmetry is lost supports a role for this protein in the construction or stabilization of the icosahedral vertices of the virus particle.


Author(s):  
Emma Peter ◽  
Eunice Machuka ◽  
Dedan Githae ◽  
Edward Okoth ◽  
Sarah Cleaveland ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
Author(s):  
David Kalenzi Atuhaire ◽  
Mathias Afayoa ◽  
Sylvester Ochwo ◽  
Savannah Mwesigwa ◽  
Julius Boniface Okuni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document