scholarly journals Loads analysis and structural optimization of a high aspect ratio, composite wing aircraft

Author(s):  
Kautuk Sinha ◽  
Thomas Klimmek ◽  
Matthias Schulze ◽  
Vega Handojo

AbstractComposite structures have shown a prominent impact in the aircraft structural design. With an increasing shift towards incorporating more composite materials in the primary aircraft structure it is imperative to have corresponding design tools to simplify the design process. In the present work, a simplified implementation for composite optimization has been developed within the DLR-AE (German Aerospace Centre, Institute of Aeroelasticity) automated aeroelastic structural design framework cpacs-MONA. This paper presents the results of structural optimization of a high aspect ratio composite wing aircraft model developed in the DLR project ATLAs. The generation of almost all involved simulation models for this study is done using the in-house DLR tool ModGen. An aeroelastic trim analysis is conducted for various manoeuvre and gust conditions. A load selection process is used to determine the most relevant sizing load cases. A comparison is made between the optimization results of a composite wing and an aluminium wing to demonstrate the more favourable strength to weight ratio of the composite wing. A manoeuvre load alleviation procedure has been introduced in the load calculation process. The results show further weight savings in the design process when load alleviation is utilized due to reduction in the span wise bending moment.

2019 ◽  
Vol 20 (10) ◽  
pp. 781-793 ◽  
Author(s):  
Yu-shan Meng ◽  
Li Yan ◽  
Wei Huang ◽  
Tian-tian Zhang ◽  
Zhao-bo Du

2013 ◽  
Vol 102 (6) ◽  
pp. 063505 ◽  
Author(s):  
Q. Shao ◽  
L. F. Voss ◽  
A. M. Conway ◽  
R. J. Nikolic ◽  
M. A. Dar ◽  
...  

2015 ◽  
Vol 46 (3) ◽  
pp. 289-305 ◽  
Author(s):  
Sergei Aleksandrovich Tuktarov ◽  
Vasilii Vasil'evich Chedrik

2016 ◽  
Vol 121 (1235) ◽  
pp. 21-53 ◽  
Author(s):  
A. Suleman ◽  
F. Afonso ◽  
J. Vale ◽  
É. Oliveira ◽  
F. Lau

ABSTRACTCommercial jets usually have relatively low-aspect-ratio wings, in spite of the associated benefits of increasing the wing aspect-ratio, such as higher lift-to-drag ratios and ranges. This is partially explained by the fact that the wing becomes more flexible by increasing the aspect-ratio that results in higher deflections which can cause aeroelastic instability problems such as flutter. An aeroelastic computational framework capable of evaluating the effects of geometric non-linearities on the aeroelastic performance of high-aspect-ratio wings has been developed and validated using numerical and experimental data. In this work, the aeroelastic performance of a base wing model with 20 m span and 1 m chord is analysed and the effect of changing the wing chord or the taper-ratio is determined. The non-linear static aeroelastic equilibrium solutions are compared in terms of drag polar, root bending moment and natural frequencies, and the change in the flutter speed boundary is assessed as a function of aspect-ratio using a time-marching approach.


2013 ◽  
Vol 302 ◽  
pp. 377-383 ◽  
Author(s):  
Yan Liu ◽  
Jun Qiang Bai ◽  
Jun Hua

The influence of structural elastic deformation on the aerodynamic characterisitcs of large transport aircraft has been researched. A method of static aeroelasticity based on multi-block structural grid of high aspect ratio wing has been established, and then a design method of jig-shape is developed. The technology of RBF interpolation is used to exchange the data of CFD/CSD. Based on RBF&Delaunay technology, a mesh motion method is developed to make the design process less time-consuming, which can be applied to large deformation of multi-block structural grid. The static aeroelastic deformation of a wing-body of large transport aircraft is analyzed. Then the wing-body's jig-shape is designed. Compared the aerodynamic characteristics between design cruise shape and target cruise shape, it shows that the aerodynamic characteristics of design cruise shape is almost equal to target cruise shape and the design process of jig-shape is feasible.


2010 ◽  
Vol 123-125 ◽  
pp. 105-108
Author(s):  
Myoung Keon Lee ◽  
Chang Min Cho ◽  
Se Yong Jang

HALE (High Altitude Long Endurance) UAVs are aircraft systems for surveillance and reconnaissance for over 25 hours. Most of UAVs consist of fuselage and high aspect ratio wing because of long-endurance flight mission. The structural weight of HALE UAV is one of the most critical design requirements. In addition, the structural stiffness for the high aspect ratio wing is another critical design requirement because the UAV has to keep the minimum clearance between wing tip and ground when the UAV is being towed. For above design requirements, the wing structure of the UAV has been designed by intermediate modulus Gr/Ep composite materials. The goal of this research is to present the optimized design concepts for the composite wing structure of the UAV. Although there are many design parameters for the composite structure of the aircraft, this research is focused on composite structure strength and buckling analysis for the plate type structures, such as cover panel skins and spar webs, which are loaded in in-plane shear and/or compression. This research presents that the wing structural weight can be reduced when the material allowables based on tape laminate are applied instead of unidirectional lamina allowables. For the buckling analysis, this report has a trade off study to find an optimized lay-up design and stacking sequence with 0°, ±45° and 90° plies. This research shows that the critical buckling load is a function of the number of ±45° plies and the position of the ±45° plies through the laminate thickness using a typical Gr/Ep composite tape material. The structural design of the UAV composite wing regarding buckling analysis is more effective when the laminates are stacked up with high percent of ±45° plies and the ±45° plies are located toward outside through the laminate.


Author(s):  
Chong Liu ◽  
Asif Rashid ◽  
Muhammad P. Jahan ◽  
Jianfeng Ma

Abstract Titanium alloy Ti-6Al-4V is used extensively in aerospace engines because of its high strength-to-weight ratio and corrosion resistance. Machining of cooling holes in turbine blades for aerospace engines is one of the major challenges faced in aerospace industries. Ti-6Al-4V is known as a difficult to be machined material by conventional machining processes, and machining of micro-through-holes with diameter less than 100 microns is even more challenging. Therefore, the objective of this study is to investigate the feasibility of machining high aspect ratio micro-through holes in Ti-6Al-4V using micro electrical discharge machining (micro-EDM) with the silver (Ag) nanopowder mixed dielectric. The machining time, overcut, recast layer, crater size, aspect ratio and surface finish of the micro-holes were evaluated. In order to minimize the positional inaccuracy and spindle runout, the microelectrodes were fabricated in-situ using block micro-EDM process. In this study, as received electrode of 300 microns diameter tungsten wire was reduced to about 50 microns diameter rod by micro block EDM using a tungsten carbide block. The effect of powder concentration, gap voltage, capacitance and electrode rotational speed was studied. It is found that high quality micro-holes of about 50 microns diameter can be achieved successfully and repeatedly using powder mixed micro-EDM (PM-μEDM). The micro-holes generated by PM-μEDM provides comparatively smoother surface finish and minimal recast layer around the rim of the micro-holes. In addition, PM-μEDM process improves machining stability, thus allowing to minimize the hole size and quality, thus enhancing the aspect ratio of micro-holes.


Sign in / Sign up

Export Citation Format

Share Document