scholarly journals Novel Compounds Identified by Structure-Based Prion Disease Drug Discovery Using In Silico Screening Delay the Progression of an Illness in Prion-Infected Mice

2020 ◽  
Author(s):  
Daisuke Ishibashi ◽  
Takeshi Ishikawa ◽  
Satoshi Mizuta ◽  
Hiroya Tange ◽  
Takehiro Nakagaki ◽  
...  
2021 ◽  
Vol 19 ◽  
Author(s):  
Preeya Negi ◽  
Lalita Das ◽  
Surya Prakash ◽  
Vaishali M. Patil

Introduction: Natural products or phytochemicals have always been useful as effective therapeutics and for providing the lead for rational drug discovery approaches specific to anti-viral therapeutics. Methods: The ongoing pandemic caused by novel coronavirus has created a demand for effective therapeutics. Thus, to achieve the primary objective to search for effective anti-viral therapeutics, in silico screening of phytochemicals present in Curcuma longa extract (ex. Curcumin) has been planned. Results: The present work involves the evaluation of ADME properties and molecular docking studies. Conclusion: The application of rationalized drug discovery approaches to screen the diverse natural resources will speed up the anti-COVID drug discovery efforts and benefit the global community.


2019 ◽  
Vol 20 (18) ◽  
pp. 4648 ◽  
Author(s):  
Nathalie Lagarde ◽  
Elodie Goldwaser ◽  
Tania Pencheva ◽  
Dessislava Jereva ◽  
Ilza Pajeva ◽  
...  

Chemical biology and drug discovery are complex and costly processes. In silico screening approaches play a key role in the identification and optimization of original bioactive molecules and increase the performance of modern chemical biology and drug discovery endeavors. Here, we describe a free web-based protocol dedicated to small-molecule virtual screening that includes three major steps: ADME-Tox filtering (via the web service FAF-Drugs4), docking-based virtual screening (via the web service MTiOpenScreen), and molecular mechanics optimization (via the web service AMMOS2 [Automatic Molecular Mechanics Optimization for in silico Screening]). The online tools FAF-Drugs4, MTiOpenScreen, and AMMOS2 are implemented in the freely accessible RPBS (Ressource Parisienne en Bioinformatique Structurale) platform. The proposed protocol allows users to screen thousands of small molecules and to download the top 1500 docked molecules that can be further processed online. Users can then decide to purchase a small list of compounds for in vitro validation. To demonstrate the potential of this online-based protocol, we performed virtual screening experiments of 4574 approved drugs against three cancer targets. The results were analyzed in the light of published drugs that have already been repositioned on these targets. We show that our protocol is able to identify active drugs within the top-ranked compounds. The web-based protocol is user-friendly and can successfully guide the identification of new promising molecules for chemical biology and drug discovery purposes.


2020 ◽  
Vol 60 (12) ◽  
pp. 5735-5745 ◽  
Author(s):  
Chi Xu ◽  
Zunhui Ke ◽  
Chuandong Liu ◽  
Zhihao Wang ◽  
Denghui Liu ◽  
...  

Author(s):  
Nandu Thrithamarassery Gangadharan ◽  
Ananda Baskaran Venkatachalam ◽  
Shiburaj Sugathan

Author(s):  
Chi Xu ◽  
Zunhui Ke ◽  
Chuandong Liu ◽  
Zhihao Wang ◽  
Denghui Liu ◽  
...  

<p>The emergence of the new coronavirus (nCoV-19) has brought global impact on human health, whilst the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under current adverse situation, we employ virtual screening tools in searching for drugs and nature products which have been already deposited in the DrugBank in attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Besides, we built an interactive online platform (<a href="https://shennongproject.com:11443/#/home">https://shennongproject.com:11443/#/home</a>) for browsing these results with the visual display of small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory works, it may serve not only as the assessment tool for the new drug discovery but also an educational website to meet general interest from the public.</p>


2020 ◽  
Author(s):  
Daisuke Ishibashi ◽  
Takeshi Ishikawa ◽  
Satoshi Mizuta ◽  
Hiroya Tange ◽  
Takehiro Nakagaki ◽  
...  

2016 ◽  
Vol 13 (4) ◽  
pp. 189-198 ◽  
Author(s):  
Vaishali M. Patil ◽  
Neeraj Masand ◽  
Satya P. Gupta

Author(s):  
Chi Xu ◽  
Zunhui Ke ◽  
Chuandong Liu ◽  
Zhihao Wang ◽  
Denghui Liu ◽  
...  

<p>The emergence of the new coronavirus (nCoV-19) has brought global impact on human health, whilst the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under current adverse situation, we employ virtual screening tools in searching for drugs and nature products which have been already deposited in the DrugBank in attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Besides, we built an interactive online platform (<a href="https://shennongproject.com:11443/#/home">https://shennongproject.com:11443/#/home</a>) for browsing these results with the visual display of small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory works, it may serve not only as the assessment tool for the new drug discovery but also an educational website to meet general interest from the public.</p>


Sign in / Sign up

Export Citation Format

Share Document