scholarly journals Excitation Mechanism of Surface Plasmon Polaritons for Surface Plasmon Sensor With 1D Metal Grating Structure for High Refractive Index Medium

2018 ◽  
Vol 9 (1) ◽  
pp. 11-18
Author(s):  
Atsushi Motogaito ◽  
Yusuke Ito
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Ming-Yi Lin ◽  
Wing-Kit Choi ◽  
Hoang Yan Lin

We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs) light-emitting devices (LEDs) with theAg/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs) mode, by tuning a one-dimensional (1D) Ag grating on the top. The coupling of surface plasmons at the top and bottomAg/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs) confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-richSiOxfilm (SiOx:a-Si QDs) at a low annealing temperature (300°C) to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL) spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.


2021 ◽  
Author(s):  
Zhaoyi Chen ◽  
Ke Feng ◽  
Zhibin Chen ◽  
Jinxing Shen ◽  
Huanliang Li

Abstract In this study, we reported a silver sinusoidal nanograting used in microchannels, forming H2O/Ag/NOA heterostructure, and studied the impact of interactions of grating-coupled surface Plasmon polaritons (SPPs) on Surface-enhanced Raman Scattering (SERS). FDTD simulations showed that when the refractive index of NOA is close to that of H2O, there were two modes of odd coupling and even coupling between SPPs. Additionally, the thinner the Ag grating, the stronger the coupling, accompanied by the frequency shift of the two coupling modes. We also estimated the influence of refractive index of the surrounding medium on SPPs coupling by varying the dielectric of the upper and lower layer of Ag grating. Our experimental results were supported by FDTD calculations, which confirmed the importance of the interactions of grating-coupled SPPs in the design of SERS substrate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2937
Author(s):  
Anton V. Dyshlyuk ◽  
Alexey Proskurin ◽  
Andrey A. Bogdanov ◽  
Oleg B. Vitrik

Since surface plasmon polaritons (SPPs) are surface waves, they cannot be excited by an incident plane wave, because free-space photons do not possess a sufficient in-plane momentum. Phase matching between the incident light and SPP can be achieved using a high-refractive-index prism, grating, or nanoantennas. In this work, we found an expression for the amplitude of SPP excited by an arbitrary 3D current distribution placed near a metal interface. The developed method is based on the well-known technique used in waveguide theory that enables finding the amplitudes of waveguide modes excited by the external currents. It reduces the SPP excitation problem to the summation of the set of emitters. As a particular example, we considered a spherical dipole nanoantenna on a metal substrate illuminated by a normally incident plane wave. The analytical calculations were in good agreement with the full-wave numerical simulations.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1784 ◽  
Author(s):  
Junior Asencios ◽  
Ramiro Moro ◽  
Clemente Luyo ◽  
Arturo Talledo

High sensitivity biosensors based on the coupling of surface plasmon polaritons on titanium nitride (TiN) and a planar waveguide mode were built; they were proved by sensing three different media: air, water and dried egg white; sensors described here could be useful for sensing materials with a refractive index between 1.0 and 1.6; in particular, materials of biological interest with a refractive index in the range 1.3–1.6, like those containing biotin and/or streptavidin. They were built by depositing Nb2O5/SiO2/TiN multilayer structures on the flat surface of D-shaped sapphire prisms by using the dc magnetron sputtering technique. Attenuated total reflection (ATR) experiments in the Kretschmann configuration were accomplished for the air/TiN/Prism and S/Nb2O5/SiO2/TiN/Prism structures, S being the sample or sensing medium. ATR spectra for plasmons at the TiN/air interface showed a broad absorption band for angles of incidence between 36 and 85°, with full width at half maximum (FWHM) of approximately 40°. For the S/Nb2O5/SiO2/TiN/Prism structures, ATR spectra showed a sharp reflectivity peak, within the broad plasmonic absorption band, which was associated with Fano resonances. The angular position and FWHM of the Fano resonances strongly depend on the refractive index of the sensing medium. ATR spectra were fitted by using the transfer-matrix method. Additionally, we found that angular sensitivity and figure of merit increase with increasing the refractive index of the sensing medium.


2017 ◽  
Vol 123 (12) ◽  
Author(s):  
Atsushi Motogaito ◽  
Tomoyasu Nakajima ◽  
Hideto Miyake ◽  
Kazumasa Hiramatsu

Sign in / Sign up

Export Citation Format

Share Document