broad absorption band
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

YMER Digital ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 75-82
Author(s):  
V. R Panse ◽  

The polycrystalline powder sample of Ce3+ activated barium gadolinium borate phosphors Ba3Gd1-x(BO3)3 : X Ce3+(0.01 ≤ X ≤ 0.06 ) are prepared by solution combustion. Formation of phosphor in desired crystalline phase confirmed by powder XRD characterization & FTIR. A SEM image shows the irregular grains with average particle size 2.5μm. The excitation spectrum consists of a single broad absorption band from 200 to 400 nm with the prominent excitation peak at 343 nm [2F5/2 to 5D1 of Ce3+ ions]. Strongest emission peak of 488nm [5D1→ 2F5/2] and weak of 501nm [5D1→ 2F7/2] wavelength which is of blue light is observed at 343nm UV light excitation. Ba3Gd1-x(BO3)3 : X Ce3+ phosphor emits blue light under UV excitation. Maximum PL emission takes place at 3 mole percentage of Ce3+. Concentration quenching for Ce3+ ions is studied. Hence Ba3Gd1-x(BO3)3 : X Ce3+ is new UV excited blue emitting phosphor useful for UV/Blue chip WLEDs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Yu Lu ◽  
Chin-Chien Chung ◽  
Ta-Jen Yen ◽  
Tsung-Yu Huang

AbstractIn this work, we integrated a periodic seed layer and oblique deposition method to fabricate a stochastically-distributed oblique-flat-sheet metamaterial perfect absorber (MPA). Such design could increase its absorption bandwidth and tolerance to high angle-incidence due to the fact that various oblique flat sheets offer different resonance conditions while even a single oblique flat sheet could provide different optical paths for resonance. On the other hand, a seed layer could reduce uncertainty regarding to direct oblique deposition and provide abilities to manipulate the bandwidth of the MPA. We also setup a simulation model in the aids of Visual Basic Application and examined the absorption behavior of the MPA under TM and TE oblique incidence that could achieve high absorbance under 80° and 60° incidence, respectively. Finally, in measurement, the fabricated sample owns 65% absorbance within 80–250 THz and over 90% absorbance within 250–320 THz at x-polarization normal incidence; as for the y-polarization normal incidence, we could achieve overall 70% absorbance within 80–300 THz. The measured results reveal similar tendency compared to the simulated ones.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2253
Author(s):  
Vincenzo Balzano ◽  
Emanuele Cavaliere ◽  
Mattia Fanetti ◽  
Sandra Gardonio ◽  
Luca Gavioli

In multicomponent thin films, properties and functionalities related to post-deposition annealing treatments, such as thermal stability, optical absorption and surface morphology are typically rationalized, neglecting the role of the substrate. Here, we show the role of the substrate in determining the temperature dependent behaviour of a paradigmatic two-component nanogranular thin film (Ag/TiO2) deposited by gas phase supersonic cluster beam deposition (SCBD) on silica and sapphire. Up to 600 °C, no TiO2 grain growth nor crystallization is observed, likely inhibited by the Zener pinning pressure exerted by the Ag nanoparticles on the TiO2 grain boundaries. Above 600 °C, grain coalescence, formation of However, the two substrates steer the evolution of the film morphology and optical properties in two different directions. anatase and rutile phases and drastic modification of the optical absorption are observed. On silica, Ag is still present as NPs distributed into the TiO2 matrix, while on sapphire, hundreds of nm wide Ag aggregates appear on the film surface. Moreover, the silica-deposited film shows a broad absorption band in the visible range while the sapphire-deposited film becomes almost transparent for wavelengths above 380 nm. We discuss this result in terms of substrate differences in thermal conductivity, thermal expansion coefficient and Ag diffusivity. The study of the substrate role during annealing is possible since SCBD allows the synthesis of the same film independently of the substrate, and suggests new perspectives on the thermodynamics and physical exchanges between thin films and their substrates during heat treatments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nupur ◽  
Marek Kuzma ◽  
Jan Hájek ◽  
Pavel Hrouzek ◽  
Alastair T. Gardiner ◽  
...  

AbstractGemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1′-Methoxy-19′-oxo-3′,4′-didehydro-7,8,1′,2′-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.


Author(s):  
Ferdinand L. Kiss ◽  
Brian P. Corbet ◽  
Nadja A. Simeth ◽  
Ben L. Feringa ◽  
Stefano Crespi

AbstractIsoindigo, the structural isomer of the well-known dye indigo, has seen a major revival recently because of the increasing interest of its use as a potential drug core structure and for the development of organic photovoltaic materials. Highly beneficial for diverse applications are its facile synthesis, straightforward functionalisation and the broad absorption band in the visible range. Moreover, its intrinsic electron deficiency renders isoindigo a promising acceptor structure in bulk heterojunction architectures. Here we present new insights into the substituent effects of N-functionalised isoindigos, developing a reliable and fast in silico screening approach of a library of compounds. Using experimental UV–Vis and electrochemical data increased the accuracy of the TD-DFT method employed. This procedure allowed us to accurately predict the optical and electrochemical properties of N-functionalised isoindigos and the elucidation of the relationship between substituent effects and electronic properties. Graphic abstract


2021 ◽  
Author(s):  
Nupur ◽  
Marek Kuzma ◽  
Jan Hájek ◽  
Pavel Hrouzek ◽  
Alastair T. Gardiner ◽  
...  

Abstract Gemmatimonas phototrophica AP64 is the first phototrophic representative of bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment. In addition, the complexes contain a carotenoid with a single broad absorption band at 490 nm in methanol. A combination of nuclear magnetic resonance, high-resolution mass spectroscopy and Fourier-transformed infra-red spectroscopy was used to determine the chemical structure of G. phototrophica light-harvesting carotenoid that we have named gemmatoxanthin. It is a novel linear carotenoid containing 11 conjugated double bonds and further substituted by methoxy, carboxyl and aldehyde group. Its IUPAC-IUBMB semi-systematic name is 1’-Methoxy-19’-oxo-3’,4’-didehydro-7,8,1’,2’-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.


2021 ◽  
Vol 03 (02) ◽  
pp. 119-127
Author(s):  
Kevin Bold ◽  
Matthias Stolte ◽  
Frank Würthner

A series of phenyl end-capped α-oligothiophenes containing four to seven thiophene subunits (4T–7T) was synthesized utilizing palladium-catalyzed cross-coupling reactions. UV/Vis spectroscopic analysis revealed one broad absorption band that shifts bathochromically with increasing number of thiophene units. Structured emission spectra are observed with Stokes shift ν~4000 cm−1 and quantum yields of up to 53%. End-capping of the oligothiophene molecules by phenyl units does not only extend the effective conjugation but also prevents from α–α-homocoupling upon electrochemical oxidation. Accordingly, reversible redox waves are observed in cyclic voltammetry with up to four reversible one-electron processes for the two longer congeners. Analyses of the first two oxidation processes in the framework of multiredox systems provide insight into the stabilization or destabilization of polaronic and bipolaronic states. An unusual zig-zag trend for the first (and to a lesser extend second) oxidation process could be explained by the sterical encumbrance of solubilizing hexyl chains in 5T and 7T molecules which counteract the formation of a fully planar quinoidal oligothiophene backbone.


2021 ◽  
Vol 21 (3) ◽  
pp. 1623-1635
Author(s):  
Anup Kuchipudi ◽  
S. Suresh Reddy ◽  
S. Vengatesan ◽  
Subhendu K. Panda ◽  
Gosipathala Sreedhar

Herein, a facile synthesis protocol for the development of directional alignment of CdSe quantum dots (QDs) on the surface of Copper benzene-1, 3, 5-tricarboxylate (CuBTC) metal-organic frameworks (MOFs) was proposed. The sensitization of CdSe QDs with MOFs offered enhancement of light-harvesting properties in the visible region of the solar spectrum due to the broad absorption band of CdSe QDs. As a photo-anode, it has generated current density of ˜20 mA/cm2 at 1.70 V (vs. Reversible hydrogen electrode (RHE)) during the photo-electrochemical water splitting in 1 M Na2S electrolyte. The present investigation demonstrates the directional attachment of CdSe QDs on CuBTC is beneficial in facilitating light-harvesting and photo-electrochemical properties of CuBTC MOFs.


2021 ◽  
Vol 33 (3) ◽  
pp. 591-599
Author(s):  
Y. Sudhakar ◽  
G. Sahaya Baskaran ◽  
P. Syam Prasad ◽  
D. Rajeswara Rao ◽  
G. Little Flower

A set of sodium borosilicate glasses mixed with different modifier oxides, viz., Li2O, MgO, CaO and ZnO, doped with antimicrobial oxide viz. CuO were synthesized. The structural (FT-IR spectroscopy, SEM and XRD) and bioactivity studies of the glasses were carried out before and after 30 days of immersion in simulated body fluid (SBF) under static conditions. Optical absorption spectra of all the glasses exhibited a broad absorption band identified due to 2B1g→2B2g octahedral transition of Cu2+ ions. Glass microstructure is analyzed using SEM images and XRD patterns to authenticate glass bioactivity (viz. to confirm whether there is formation of hydroxyapatite (HAp) layer on the surface). For further confirmation of the formation of HAp on the surface of the post immerse samples, the FTIR spectra were recorded. The spectra revealed some vibrational peaks of calcium phosphate. Solubility (weight loss due to immersion in SBF) percentage is found to be different for different modifiers mixed glasses containing antibacterial CuO. SEM results confirm apparent nodular calcium phosphate microcrystalites. It is observed that the addition of antimicrobial oxide has a positive effect on the bioactivity of glass and make these glasses as fourth-generation biomaterials, which are being extensively used to heal the wounds in the human body by facilitating the growth of soft tissues.


Sign in / Sign up

Export Citation Format

Share Document