Leaf beetle larvae, Plagiodera versicolora (Coleoptera: Chrysomelidae), show decreased performance on uninfested host plants exposed to airborne factors from plants infested by conspecific larvae

2014 ◽  
Vol 49 (2) ◽  
pp. 249-253 ◽  
Author(s):  
Kinuyo Yoneya ◽  
Soichi Kugimiya ◽  
Junji Takabayashi
Author(s):  
Jiahao Ling ◽  
Xiaoping Li ◽  
Guo Yang ◽  
Tongming Yin

AbstractPlagiodera versicolora Laicharting is a highly damaging leaf beetle foraging on willow leaves. In willow germplasm collections, observation has shown that Salix suchowensis Cheng was severely foraged by this leaf beetle while Salix triandra L. was damage free or only slightly damaged. Results of olfactometer bioassays show that the headspace volatiles from leaves of S. triandra significantly repelled adult beetles, suggesting that this species produces volatile repellents against P. versicolora. S. suchowensis had no effect on the beetles. Gas chromatography-mass spectrometry was carried out to profile the headspace volatile organic compounds and 23 compounds from leaves of the alternate species in significantly different concentrations were detected. The effects of 20 chemical analogs on host discrimination were examined. Olfactory response to these chemicals showed that o-cymene, a S. suchowensis specific constituent, significantly attracted adult P. versicolora. In contrast, cis-3-hexenyl acetate, a constituent concentrated more in S. triandra than in S. suchowensis, significantly repelled beetles. Mixing o-cymene and cis-3-hexenyl acetate in comparable concentrations as in the volatiles of S. suchowensis demonstrated that the latter could mask the attracting effect of the former, causing a neutral response by adult beetles to leaves of S. suchowensis against clean air. In addition, chemical analogs have the same effect as plants when resembling volatile organic compounds in real samples. Two volatile metabolites were detected triggering host discrimination by one of the most damaging insect pests to host and non-host willows. The two metabolites are of considerable potential for use as olfactory signs in managing the beetles.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201311
Author(s):  
Paulina Kowalski ◽  
Michael Baum ◽  
Marcel Körten ◽  
Alexander Donath ◽  
Susanne Dobler

Phytophagous insects can tolerate and detoxify toxic compounds present in their host plants and have evolved intricate adaptations to this end. Some insects even sequester the toxins for their defence. This necessitates specific mechanisms, especially carrier proteins that regulate uptake and transport to specific storage sites or protect sensitive tissues from noxious compounds. We identified three ATP-binding cassette subfamily B (ABCB) transporters from the transcriptome of the cardenolide-sequestering leaf beetle Chrysochus auratus and analysed their functional role in the sequestration process. These were heterologously expressed and tested for their ability to interact with various potential substrates: verapamil (standard ABCB substrate), the cardenolides digoxin (commonly used), cymarin (present in the species's host plant) and calotropin (present in the ancestral host plants). Verapamil stimulated all three ABCBs and each was activated by at least one cardenolide, however, they differed as to which they were activated by. While the expression of the most versatile transporter fits with a protective role in the blood–brain barrier, the one specific for cymarin shows an extreme abundance in the elytra, coinciding with the location of the defensive glands. Our data thus suggest a key role of ABCBs in the transport network needed for cardenolide sequestration.


2008 ◽  
Vol 82 (5) ◽  
pp. 1035-1037 ◽  
Author(s):  
Carlos García-Robledo ◽  
Charles L. Staines

It is suggested that rolled-leaf hispine beetles (Hispinae, Coleoptera) and plants from the order Zingiberales maintained a highly specialized plant-herbivore interaction for >60 My. The evidence supporting this old and conservative interaction are herbivory marks found on leaves of the genus Zingiberopsis (Zingiberaceae) from the latest Cretaceous and early Eocene. This fossil herbivory was described as the ichnotaxon Cephaloleichnites strongii (Hispinae, Coleoptera), based on the assumption that this type of herbivory can be solely attributed to extant rolled-leaf beetles. This ichnotaxon has been a key element in several analyses on the origin, radiation and diversification of tropical insect herbivores. In this paper we report feeding patterns equivalent to those described in Zingiberopsis fossils but produced by larvae of Pyralidae and Choreutidae (Lepidoptera) and Anopsilus weevils (Curculionidae, Coleoptera) in four families of extant Zingiberales. We discuss the implications of C. strongii not being a rolled leaf beetle and how this may affect the current knowledge of the co-diversification of rolled-leaf beetles and their host plants from the order Zingiberales.


2018 ◽  
Vol 8 (11) ◽  
pp. 5828-5836 ◽  
Author(s):  
Danilo G. Muniz ◽  
Martha L. Baena ◽  
Rogelio Macías-Ordóñez ◽  
Glauco Machado

Sign in / Sign up

Export Citation Format

Share Document