Influence of Gas Migration on the Sustained Casing Pressure (SCP) of Subsea Wellhead in Deepwater Wells

2019 ◽  
Vol 44 (12) ◽  
pp. 10409-10419
Author(s):  
Jing Zeng ◽  
Deli Gao ◽  
Yanbin Wang ◽  
Jun Fang
Author(s):  
Andrew K. Wojtanowicz

Oil well cement problems such as small cracks or channels may result in gas migration and lead to irreducible pressure at the casing head. Irreducible casing pressure also termed, Sustained Casing Pressure (SCP) is hazardous for a safe operation and the affected wells cannot be terminated without remedial operations. It is believed that even very small leaks might lead to continuous emissions of gas to the atmosphere. In the chapter, the author describes physical mechanisms of irreducible casing pressure and qualifies the associated risk by showing statistical data from the Gulf of Mexico and discussing the regulatory approach. This chapter also introduces a new approach to evaluate risk of casing pressure by computing a probable rate of atmospheric emissions from wells with failed casing heads resulting from excessive pressure. Also presented is a new method for assessing potential for self-plugging of such wells flowing wet gas as the gas migration channels could be plugged off by the condensate.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Fuping Feng ◽  
Ziyuan Cong ◽  
Wuyi Shan ◽  
Chaoyang Hu ◽  
Maosen Yan ◽  
...  

Sustained casing pressure (SCP) is a challenge in the well integrity management in oil and gas fields around the world. The flow state of leaked gas will change when migrated up annulus protective fluid. To show the influence of gas migration on casing pressure recovery, a prediction model of SCP based on Reynolds number of bubbles was established. The casing pressure prediction of typical wells and the sensitivity analysis of casing pressure are performed. The results show that the casing pressure recovery time decreases with the increase of cement permeability. However, larger cement permeability has little effect on the casing pressure after stabilization. Increasing the height of annulus protective fluid reduces the stable casing pressure value and shortens the casing pressure recovery time. Compared with the existing models, the results show that the time of casing pressure recovery will be shortened by the change of gas migration, and the effect of bubbles Re < 1 on SCP will be greater. The new model can be used to detect and treat the SCP problem caused by small Reynolds number gas leakage.


2021 ◽  
Author(s):  
B. Brechan (Wellviz) ◽  
A. Teigland ◽  
S. Dale ◽  
S. Sangesland

Abstract Emerging technologies are expected to provide step changes in many areas within planning, making and production of wells. The main topic of this paper covers in a digital workflow, where the different disciplines contributions to well integrity are expected to be on a fully digital format. All phases in the lifecycle of wells are integrated into one digital process, where possible improvements are enabled by the transition from a human oriented work process to a software oriented (human supported) process. This transition has taken place in several other comparable energy and capital-intensive industries. Today, some wells have the new fiber optics that enables a range of opportunities for improvement of well integrity. Distributed Acoustic Sensing (DAS) has measurements for every meter, which provides new aspects such as in situ measurements during cement jobs and drilling. Other applications of the new fiber optic technology are monitoring of gas migration, source of sustained casing pressure and other measurements which have the potential to develop into standard procedures or even regulatory requirements. With gas migration, corrosion and other changes affecting the integrity of the well construction, integrity can be re-modelled and updated automatically in a fully digital workflow to understand the safety margins. A part of this digital process is automating the risk level for each well and the entire asset. These processes and the prototype of the automated risk assessment are possible in a fully digital process, where planning and well construction commence with support from modern well planning and integrity software.


2011 ◽  
Author(s):  
Salim Taoutaou ◽  
Jorge Andres Vargas Bermea ◽  
Pietro Bonomi ◽  
Bassam Elatrache ◽  
Christian Pasturel ◽  
...  

2012 ◽  
Vol 430-432 ◽  
pp. 2067-2070
Author(s):  
Zhang Zhi ◽  
Tai Ping Xiao ◽  
Zheng Mao Chen ◽  
Tai He Shi

Currently the annulus pressure of gas well becomes more common, so the safe production of several wells has been seriously affected. The annulus pressure mechanism is relatively complex, and it can be approximately classified into annulus pressure induced by temperature effect, by ballooning effect and by leakage or seal failure etc. The article mainly focuses on the annulus pressure mechanism induced by ballooning effect and the corresponding calculation model. For the tubing column with two ends fixed and closed, when tubing internal pressure is larger than the external extrusion force, the external diameter of the tubing column balloons (i.e. ballooning effect). It reduces the annular volume between the tubing and the casing, and consequentially induces annulus pressure. Based on the fundamental theory of elastic-plastic mechanics, the tubing column is simplified into the thin walled cylinder so as to deduce the relation models between the internal pressure and its swell capacity and A annulus pressure value, which provide theoretical support for safety evaluation on annulus pressure and the next treatment program.


Sign in / Sign up

Export Citation Format

Share Document