scholarly journals Deep Learning for Discussion-Based Cross-Domain Performance Prediction of MOOC Learners Grouped by Language on FutureLearn

Author(s):  
Ismail Duru ◽  
Ayse Saliha Sunar ◽  
Su White ◽  
Banu Diri
2020 ◽  
Author(s):  
Geoffrey Schau ◽  
Erik Burlingame ◽  
Young Hwan Chang

AbstractDeep learning systems have emerged as powerful mechanisms for learning domain translation models. However, in many cases, complete information in one domain is assumed to be necessary for sufficient cross-domain prediction. In this work, we motivate a formal justification for domain-specific information separation in a simple linear case and illustrate that a self-supervised approach enables domain translation between data domains while filtering out domain-specific data features. We introduce a novel approach to identify domainspecific information from sets of unpaired measurements in complementary data domains by considering a deep learning cross-domain autoencoder architecture designed to learn shared latent representations of data while enabling domain translation. We introduce an orthogonal gate block designed to enforce orthogonality of input feature sets by explicitly removing non-sharable information specific to each domain and illustrate separability of domain-specific information on a toy dataset.


2020 ◽  
Vol 55 ◽  
pp. 334-347 ◽  
Author(s):  
Xiang Li ◽  
Wei Zhang ◽  
Hui Ma ◽  
Zhong Luo ◽  
Xu Li

Author(s):  
Sourya Sengupta ◽  
Amitojdeep Singh ◽  
John Zelek ◽  
Vasudevan Lakshminarayanan

Author(s):  
Ratnesh Kumar ◽  
Edwin Weill ◽  
Farzin Aghdasi ◽  
Parthasarathy Sriram

AbstractIn this paper we tackle the problem of vehicle re-identification in a camera network utilizing triplet embeddings. Re-identification is the problem of matching appearances of objects across different cameras. With the proliferation of surveillance cameras enabling smart and safer cities, there is an ever-increasing need to re-identify vehicles across cameras. Typical challenges arising in smart city scenarios include variations of viewpoints, illumination and self occlusions. Most successful approaches for re-identification involve (deep) learning an embedding space such that the vehicles of same identities are projected closer to one another, compared to the vehicles representing different identities. Popular loss functions for learning an embedding (space) include contrastive or triplet loss. In this paper we provide an extensive evaluation of triplet loss applied to vehicle re-identification and demonstrate that using the recently proposed sampling approaches for mining informative data points outperform most of the existing state-of-the-art approaches for vehicle re-identification. Compared to most existing state-of-the-art approaches, our approach is simpler and more straightforward for training utilizing only identity-level annotations, along with one of the smallest published embedding dimensions for efficient inference. Furthermore in this work we introduce a formal evaluation of a triplet sampling variant (batch sample) into the re-identification literature. In addition to the conference version [24], this submission adds extensive experiments on new released datasets, cross domain evaluations and ablation studies.


Author(s):  
Greg Smith ◽  
John Lundberg ◽  
Masayoshi Shibatani

In the recent years, intelligent data-driven faultdiagnosis methods on gearboxes have been successfully developedand popularly applied in the industries. Currently, most ofthe machine learning techniques require that the training andtesting data are from the same distribution. However, thisassumption is difficult to be met in the real industries, sincethe gearbox operating conditions usually change in practice,which results in significant data distribution gap and diagnosticperformance deteriorations in applying the learned knowledgeon the new conditions. This paper proposes a deep learning-based domain adaptation method to address this issue. Theraw current signals are directly used as the model inputs fordiagnostics, which are easy to collect in the real industries andfacilitate practical applications. The maximum mean discrepancymetric is introduced to the deep neural network, the optimizationof which guarantees the extraction of generalized machineryhealth condition features across different operating conditions.The experiments on a real-world gearbox condition monitoringdataset validate the effectiveness of the proposed method, whichoffers a promising tool for cross-domain diagnosis in the realindustries.


2021 ◽  
Vol 11 (19) ◽  
pp. 9153
Author(s):  
Vinicius Renan de Carvalho ◽  
Ender Özcan ◽  
Jaime Simão Sichman

As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems.


Sign in / Sign up

Export Citation Format

Share Document