Journal of Artificial Intelligence and Soft Computing Research
Latest Publications


TOTAL DOCUMENTS

25
(FIVE YEARS 25)

H-INDEX

4
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2449-6499

Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

Abstract Deep Neural Networks (DNNs) have shown great success in many fields. Various network architectures have been developed for different applications. Regardless of the complexities of the networks, DNNs do not provide model uncertainty. Bayesian Neural Networks (BNNs), on the other hand, is able to make probabilistic inference. Among various types of BNNs, Dropout as a Bayesian Approximation converts a Neural Network (NN) to a BNN by adding a dropout layer after each weight layer in the NN. This technique provides a simple transformation from a NN to a BNN. However, for DNNs, adding a dropout layer to each weight layer would lead to a strong regularization due to the deep architecture. Previous researches [1, 2, 3] have shown that adding a dropout layer after each weight layer in a DNN is unnecessary. However, how to place dropout layers in a ResNet for regression tasks are less explored. In this work, we perform an empirical study on how different dropout placements would affect the performance of a Bayesian DNN. We use a regression model modified from ResNet as the DNN and place the dropout layers at different places in the regression ResNet. Our experimental results show that it is not necessary to add a dropout layer after every weight layer in the Regression ResNet to let it be able to make Bayesian Inference. Placing Dropout layers between the stacked blocks i.e. Dense+Identity+Identity blocks has the best performance in Predictive Interval Coverage Probability (PICP). Placing a dropout layer after each stacked block has the best performance in Root Mean Square Error (RMSE).


Author(s):  
Lars J. Isaksson ◽  
Paul Summers ◽  
Sara Raimondi ◽  
Sara Gandini ◽  
Abhir Bhalerao ◽  
...  

Abstract Researchers address the generalization problem of deep image processing networks mainly through extensive use of data augmentation techniques such as random flips, rotations, and deformations. A data augmentation technique called mixup, which constructs virtual training samples from convex combinations of inputs, was recently proposed for deep classification networks. The algorithm contributed to increased performance on classification in a variety of datasets, but so far has not been evaluated for image segmentation tasks. In this paper, we tested whether the mixup algorithm can improve the generalization performance of deep segmentation networks for medical image data. We trained a standard U-net architecture to segment the prostate in 100 T2-weighted 3D magnetic resonance images from prostate cancer patients, and compared the results with and without mixup in terms of Dice similarity coefficient and mean surface distance from a reference segmentation made by an experienced radiologist. Our results suggest that mixup offers a statistically significant boost in performance compared to non-mixup training, leading to up to 1.9% increase in Dice and a 10.9% decrease in surface distance. The mixup algorithm may thus offer an important aid for medical image segmentation applications, which are typically limited by severe data scarcity.


Author(s):  
Taegong Kim ◽  
Cheong Hee Park

Abstract Anomaly pattern detection in a data stream aims to detect a time point where outliers begin to occur abnormally. Recently, a method for anomaly pattern detection has been proposed based on binary classification for outliers and statistical tests in the data stream of binary labels of normal or an outlier. It showed that an anomaly pattern can be detected accurately even when outlier detection performance is relatively low. However, since the anomaly pattern detection method is based on the binary classification for outliers, most well-known outlier detection methods, with the output of real-valued outlier scores, can not be used directly. In this paper, we propose an anomaly pattern detection method in a data stream using the transformation to multiple binary-valued data streams from real-valued outlier scores. By using three outlier detection methods, Isolation Forest(IF), Autoencoder-based outlier detection, and Local outlier factor(LOF), the proposed anomaly pattern detection method is tested using artificial and real data sets. The experimental results show that anomaly pattern detection using Isolation Forest gives the best performance.


Author(s):  
Simone A. Ludwig

Abstract Epilepsy is a chronic neurological disorder that is caused by unprovoked recurrent seizures. The most commonly used tool for the diagnosis of epilepsy is the electroencephalogram (EEG) whereby the electrical activity of the brain is measured. In order to prevent potential risks, the patients have to be monitored as to detect an epileptic episode early on and to provide prevention measures. Many different research studies have used a combination of time and frequency features for the automatic recognition of epileptic seizures. In this paper, two fusion methods are compared. The first is based on an ensemble method and the second uses the Choquet fuzzy integral method. In particular, three different machine learning approaches namely RNN, ML and DNN are used as inputs for the ensemble method and the Choquet fuzzy integral fusion method. Evaluation measures such as confusion matrix, AUC and accuracy are compared as well as MSE and RMSE are provided. The results show that the Choquet fuzzy integral fusion method outperforms the ensemble method as well as other state-of-the-art classification methods.


Author(s):  
Rafal Doroz ◽  
Krzysztof Wrobel ◽  
Piotr Porwik ◽  
Tomasz Orczyk

Abstract The growing amount of collected and processed data means that there is a need to control access to these resources. Very often, this type of control is carried out on the basis of bio-metric analysis. The article proposes a new user authentication method based on a spatial analysis of the movement of the finger’s position. This movement creates a sequence of data that is registered by a motion recording device. The presented approach combines spatial analysis of the position of all fingers at the time. The proposed method is able to use the specific, often different movements of fingers of each user. The experimental results confirm the effectiveness of the method in biometric applications. In this paper, we also introduce an effective method of feature selection, based on the Hotelling T2 statistic. This approach allows selecting the best distinctive features of each object from a set of all objects in the database. It is possible thanks to the appropriate preparation of the input data.


2021 ◽  
Vol 11 (4) ◽  
pp. 307-318
Author(s):  
Robert K. Nowicki ◽  
Robert Seliga ◽  
Dariusz Żelasko ◽  
Yoichi Hayashi

Abstract The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.


2021 ◽  
Vol 11 (4) ◽  
pp. 331-339
Author(s):  
Marcin Gabryel ◽  
Magdalena M. Scherer ◽  
Łukasz Sułkowski ◽  
Robertas Damaševičius

Abstract Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot encoding for categorical data. The data of mouse clicks come from seven large retail stores and the data of lead classification from three financial institutions. The data are collected by a JavaScript code embedded into HTML pages. The three proposed models achieved relatively high accuracy in detecting artificially generated traffic.


2021 ◽  
Vol 11 (4) ◽  
pp. 319-330
Author(s):  
Artur Starczewski ◽  
Magdalena M. Scherer ◽  
Wojciech Książek ◽  
Maciej Dębski ◽  
Lipo Wang

Abstract Data clustering is an important method used to discover naturally occurring structures in datasets. One of the most popular approaches is the grid-based concept of clustering algorithms. This kind of method is characterized by a fast processing time and it can also discover clusters of arbitrary shapes in datasets. These properties allow these methods to be used in many different applications. Researchers have created many versions of the clustering method using the grid-based approach. However, the key issue is the right choice of the number of grid cells. This paper proposes a novel grid-based algorithm which uses a method for an automatic determining of the number of grid cells. This method is based on the kdist function which computes the distance between each element of a dataset and its kth nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.


2021 ◽  
Vol 11 (4) ◽  
pp. 271-286
Author(s):  
Robert Cierniak ◽  
Piotr Pluta ◽  
Marek Waligóra ◽  
Zdzisław Szymański ◽  
Konrad Grzanek ◽  
...  

Abstract This paper presents a new image reconstruction method for spiral cone- beam tomography scanners in which an X-ray tube with a flying focal spot is used. The method is based on principles related to the statistical model-based iterative reconstruction (MBIR) methodology. The proposed approach is a continuous-to-continuous data model approach, and the forward model is formulated as a shift-invariant system. This allows for avoiding a nutating reconstruction-based approach, e.g. the advanced single slice rebinning methodology (ASSR) that is usually applied in computed tomography (CT) scanners with X-ray tubes with a flying focal spot. In turn, the proposed approach allows for significantly accelerating the reconstruction processing and, generally, for greatly simplifying the entire reconstruction procedure. Additionally, it improves the quality of the reconstructed images in comparison to the traditional algorithms, as confirmed by extensive simulations. It is worth noting that the main purpose of introducing statistical reconstruction methods to medical CT scanners is the reduction of the impact of measurement noise on the quality of tomography images and, consequently, the dose reduction of X-ray radiation absorbed by a patient. A series of computer simulations followed by doctor’s assessments have been performed, which indicate how great a reduction of the absorbed dose can be achieved using the reconstruction approach presented here.


2021 ◽  
Vol 11 (4) ◽  
pp. 287-306
Author(s):  
Jarosław Bilski ◽  
Bartosz Kowalczyk ◽  
Andrzej Marjański ◽  
Michał Gandor ◽  
Jacek Zurada

Abstract In this paper1 a new neural networks training algorithm is presented. The algorithm originates from the Recursive Least Squares (RLS) method commonly used in adaptive filtering. It uses the QR decomposition in conjunction with the Givens rotations for solving a normal equation - resulting from minimization of the loss function. An important parameter in neural networks is training time. Many commonly used algorithms require a big number of iterations in order to achieve a satisfactory outcome while other algorithms are effective only for small neural networks. The proposed solution is characterized by a very short convergence time compared to the well-known backpropagation method and its variants. The paper contains a complete mathematical derivation of the proposed algorithm. There are presented extensive simulation results using various benchmarks including function approximation, classification, encoder, and parity problems. Obtained results show the advantages of the featured algorithm which outperforms commonly used recent state-of-the-art neural networks training algorithms, including the Adam optimizer and the Nesterov’s accelerated gradient.


Sign in / Sign up

Export Citation Format

Share Document