Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property

Author(s):  
Saly R. El-Dakkony ◽  
Mahmoud F. Mubarak ◽  
Hager R. Ali ◽  
Amany Gaffer ◽  
Y. M. Moustafa ◽  
...  
Author(s):  
N. Rosdi ◽  
M. N. M. Sokri ◽  
N. M. Rashid ◽  
M. S. Che Chik ◽  
M. S. Musa

Chitosan membrane has the potential to separate lead(II) ions from aqueous solution. However, the kind of membrane has a drawback due to the low structural properties. Thus, this study investigates the role of silica in improving chitosan-based flat sheet membrane for removal of lead(II) ions from aqueous solution. The functional groups and structural morphologies were characterized using Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectrometer and Scanning Electron Microscope (SEM), respectively. The membrane performance in terms of adsorption study was conducted at different pHs and initial concentration of lead(II) solution. The FTIR-ATR spectrum showed the existence of new absorption peak of chitosan/silica membrane. SEM images revealted the presence of microvoids on the cross-section of the chitosan/silica membrane whereas pure chitosan membrane possessed dense structure. The adsorption study showed that the composite membrane exhibited higher efficiency of lead(II) removal at optimum pH of 7.0 which was 89.27% as compared to 11.50% of pure chitosan membrane. The amount of lead(II) adsorbed onto the membrane was 57.60 mg/g. Therefore, it indicates the potential use of silica to improve the properties of chitosan membrane for removal of heavy metal from water solution.


2018 ◽  
Vol 156 ◽  
pp. 04001
Author(s):  
Fitri Khoerunnisa ◽  
Hendrawan ◽  
Dwi Rizki Primastari ◽  
Riska Agiawati

Biopolymer are expected to be environmentally compatible and to have great potential application as membranes material. The chitosan-poly (ethylene glycol)/PEG based composite membranes was successfully synthesized via inversed phase method. The effect of multiwalled carbon nanotubes (MWCNT) as nanofiller on properties and performances of composite membranes were intensively evaluated. The membrane was prepared by mixing of chitosan and PEG solutions at the same composition ratio while MWCNT amount in the mixture was varied. The synthesized membrane was characterized by means of FTIR spectroscopy, scanning electron microscopy (SEM), contact angle, and tensile strength measurement. The performance of composite membrane on filtration was evaluated in term of flux (permeability) and rejection (rejection) tests. The results showed that the optimum volume ratio of composite membrane solution was found at 30:10:7.5 for chitosan/ PEG/ MWCNT, respectively, as indicated by the largest flux. Insertion of MWCNT nanofiller notably enhanced hydrophilicity, porosity, and mechanical properties of composites membranes that are confirmed by contact angle, SEM images and elongation forces value, respectively. The MWCNT nanofiller remarkably increased both of flux and rejection of composite membranes up to 60 Lm2h-1 and 96%, respectively. The remarkable enhancement of composite membrane performance is attributed to the effective interaction of MWCNT with polymeric matrix.


Sign in / Sign up

Export Citation Format

Share Document