Statistical optimization for fatty acid reduction in waste cooking oil using a biological method and the continuous process for polyhydroxyalkanoate and biodiesel production

Author(s):  
Kanokphorn Sangkharak ◽  
Sappasith Klomklao ◽  
Nisa Paichid ◽  
Tewan Yunu
2021 ◽  
Author(s):  
Muhammed Niyas Maliyekkal ◽  
Andavan Shaija

Abstract It is well known that biodiesel from pure coconut oil is suited best for diesel engine operation. However, the commercialization of coconut oil biodiesel is unfeasible due to its higher cost and demand as a food material. In this study, biodiesels were produced from coconut testa oil and coconut waste cooking oil, two waste feedstock derivatives of coconut. Fatty acid composition and properties such as density, calorific value, kinematic viscosity, cloud and pour points, flash and fire points, Conradson carbon residue, and copper strip corrosion of these two biodiesels were determined and compared with those of fresh coconut oil biodiesel and the standard diesel. It was found that the properties and fatty acid profiles of all three biodiesels were similar. Furthermore, from the engine testing using B20 (diesel-biodiesel blend with 20% biodiesel) blends of prepared biodiesels, it was found that the engine performance, emission, and combustion characteristics were comparable for coconut testa oil and coconut waste cooking oil biodiesels with fresh coconut oil biodiesel. Thus the coconut testa oil and coconut waste cooking oil can be used as low-cost feedstocks for biodiesel production with all advantages of fresh coconut oil.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121463
Author(s):  
Matheus Arrais Gonçalves ◽  
Erica Karine Lourenço Mares ◽  
José Roberto Zamian ◽  
Geraldo Narciso da Rocha Filho ◽  
Leyvison Rafael Vieira da Conceição

2014 ◽  
Vol 3 (6) ◽  
Author(s):  
Alex Mazubert ◽  
Joelle Aubin ◽  
Sébastien Elgue ◽  
Martine Poux

AbstractThe transformation of waste cooking oils for fatty acid methyl ester production is investigated in two intensified technologies: microstructured Corning


2018 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
Hadrah Hadrah ◽  
Monik Kasman ◽  
Fitria Mayang Sari

Waste cooking oil is used oil that has been used for domestic purposes and has undergone changes, both physically and chemically. One effort that can be done to reduce the adverse effects of used cooking oil is changed the material used cooking oil into biodiesel. In this study of biodiesel production from waste cooking oil is done by using biodiesel transesterification reaction as generally through a pretreatment in order to reduce the number of Free Fatty Acid in cooking oil. The high number of Free Fatty Acid will complicate the separation of glycerol from biodiesel so that production of biodiesel will be slight. Test parameters of biodiesel quality produced by  transesterification process refers to the Indonesian biodiesel quality standard ISO 7182: 2015. The production of biodiesel from used cooking oil in this experiment using variations methanol and sodium hydroxide solution ratio to the used cooking oil is 1: 2; 1: 4 and 1: 8. Test results showed that the quality of biodiesel is in compliance with ISO 7182: 2015 on the parameters of viscosity, density and flame test. While the Free Fatty Acids remained above the quality standard ISO 7182: 2015.Keywords :    Waste cooking oil, Transesterification, Biodiesel


Fuel ◽  
2020 ◽  
Vol 282 ◽  
pp. 118853
Author(s):  
Erick Soria-Figueroa ◽  
Violeta Y. Mena-Cervantes ◽  
Montserrat García-Solares ◽  
Raúl Hernández-Altamirano ◽  
Jorge Vazquez-Arenas

Sign in / Sign up

Export Citation Format

Share Document