Changes in soil aggregate-associated organic carbon, enzymatic activity, and biological pools under conservation agriculture based practices in rice–wheat system

Author(s):  
Sandeep Sharma ◽  
Bharat Bhushan Vashisht ◽  
Pritpal Singh ◽  
Yadvinder Singh
CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105065
Author(s):  
Lyda Hok ◽  
João Carlos de Moraes Sá ◽  
Stéphane Boulakia ◽  
Manuel Reyes ◽  
Ademir de Oliveira Ferreira ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2020 ◽  
Vol 297 ◽  
pp. 106924 ◽  
Author(s):  
Chukwuebuka C. Okolo ◽  
Girmay Gebresamuel ◽  
Amanuel Zenebe ◽  
Mitiku Haile ◽  
Peter N. Eze

Sign in / Sign up

Export Citation Format

Share Document