Rhythm of a life within life: role of viral suppressors in hijacking the host cell

Author(s):  
Satendra K. Mangrauthia ◽  
S. V. Ramesh ◽  
Nandita Sahana ◽  
Shelly Praveen
Keyword(s):  
2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


2015 ◽  
Vol 105 (10) ◽  
pp. 1288-1301 ◽  
Author(s):  
Salim Bourras ◽  
Thierry Rouxel ◽  
Michel Meyer

Agrobacterium species are soilborne gram-negative bacteria exhibiting predominantly a saprophytic lifestyle. Only a few of these species are capable of parasitic growth on plants, causing either hairy root or crown gall diseases. The core of the infection strategy of pathogenic Agrobacteria is a genetic transformation of the host cell, via stable integration into the host genome of a DNA fragment called T-DNA. This genetic transformation results in oncogenic reprogramming of the host to the benefit of the pathogen. This unique ability of interkingdom DNA transfer was largely used as a tool for genetic engineering. Thus, the artificial host range of Agrobacterium is continuously expanding and includes plant and nonplant organisms. The increasing availability of genomic tools encouraged genome-wide surveys of T-DNA tagged libraries, and the pattern of T-DNA integration in eukaryotic genomes was studied. Therefore, data have been collected in numerous laboratories to attain a better understanding of T-DNA integration mechanisms and potential biases. This review focuses on the intranuclear mechanisms necessary for proper targeting and stable expression of Agrobacterium oncogenic T-DNA in the host cell. More specifically, the role of genome features and the putative involvement of host’s transcriptional machinery in relation to the T-DNA integration and effects on gene expression are discussed. Also, the mechanisms underlying T-DNA integration into specific genome compartments is reviewed, and a theoretical model for T-DNA intranuclear targeting is presented.


2021 ◽  
Vol 295 ◽  
pp. 198333
Author(s):  
Flora De Conto ◽  
Francesca Conversano ◽  
Sergey V. Razin ◽  
Silvana Belletti ◽  
Maria Cristina Arcangeletti ◽  
...  

2018 ◽  
Vol 47 (1) ◽  
pp. 153-173 ◽  
Author(s):  
Sander Boonstra ◽  
Jelle S. Blijleven ◽  
Wouter H. Roos ◽  
Patrick R. Onck ◽  
Erik van der Giessen ◽  
...  

Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.


2019 ◽  
Vol 38 (12) ◽  
pp. 1414-1417 ◽  
Author(s):  
Maudry Laurent-Rolle ◽  
Juliet Morrison

2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Susmita Ghosh ◽  
Elizabeth A. Ruelke ◽  
Joshua C. Ferrell ◽  
Maria D. Bodero ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


Sign in / Sign up

Export Citation Format

Share Document