Fertilization with human sperm bound to zona pellucida by pressing onto the oocyte membrane

Human Cell ◽  
2020 ◽  
Vol 33 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Shota Hatakeyama ◽  
Yasuyuki Araki ◽  
Shirei Ohgi ◽  
Atsushi Yanaihara ◽  
Yasuhisa Araki
2006 ◽  
Vol 120 (1) ◽  
pp. 33-44 ◽  
Author(s):  
P. C. N. Chiu ◽  
M.-K. Chung ◽  
R. Koistinen ◽  
H. Koistinen ◽  
M. Seppala ◽  
...  

2011 ◽  
Vol 18 (9) ◽  
pp. 876-885 ◽  
Author(s):  
Mayel Chirinos ◽  
Cecilia Cariño ◽  
María Elena González-González ◽  
Ernesto Arreola ◽  
Rodrigo Reveles ◽  
...  

2014 ◽  
Vol 205 (6) ◽  
pp. 801-809 ◽  
Author(s):  
Matteo A. Avella ◽  
Boris Baibakov ◽  
Jurrien Dean

The extracellular zona pellucida surrounds ovulated eggs and mediates gamete recognition that is essential for mammalian fertilization. Zonae matrices contain three (mouse) or four (human) glycoproteins (ZP1–4), but which protein binds sperm remains controversial. A defining characteristic of an essential zona ligand is sterility after genetic ablation. We have established transgenic mice expressing human ZP4 that form zonae pellucidae in the absence of mouse or human ZP2. Neither mouse nor human sperm bound to these ovulated eggs, and these female mice were sterile after in vivo insemination or natural mating. The same phenotype was observed with truncated ZP2 that lacks a restricted domain within ZP251–149. Chimeric human/mouse ZP2 isoforms expressed in transgenic mice and recombinant peptide bead assays confirmed that this region accounts for the taxon specificity observed in human–mouse gamete recognition. These observations in transgenic mice document that the ZP251–149 sperm-binding domain is necessary for human and mouse gamete recognition and penetration through the zona pellucida.


2010 ◽  
Vol 22 (9) ◽  
pp. 37 ◽  
Author(s):  
K. A. Redgrove ◽  
B. Nixon ◽  
E. A. McLaughlin ◽  
M. K. O'Bryan ◽  
R. J. Aitken

A unique characteristic of mammalian spermatozoa is that upon ejaculation, they are unable to recognise and bind to an ovulated oocyte. These functional attributes are only realised following the sperms ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as ‘capacitation’. Since spermatozoa are both transcriptionally and translationally quiescent cells, this functional transformation must be engineered by a combination of post-translational modification and spatial reorganisation of existing sperm proteins. Indeed, evidence from our laboratory suggests that a key attribute of capacitation is the remodeling of the sperm surface architecture leading to the assembly and / or presentation of multimeric sperm-oocyte receptor complex(es). Through the novel application of Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE), we have secured the first direct evidence that human spermatozoa express a number of these protein complexes on their surface. Furthermore, we have demonstrated that a subset of these complexes harbour putative zona adhesion proteins and display strong affinity for solubilised zona pellucidae. In this study, we have extended our findings through the characterisation of one such complex containing arylsulfatase A (ASA), a protein with recognised affinity for sulfated ligands present within the zona pellucida. Through the application of immunohistochemistry and flow cytometry we revealed that ASA undergoes a capacitation-associated translocation to become expressed on the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida interactions. This dramatic relocation was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol, suggesting that it may be driven in part by alteration in the membrane fluidity characteristics. Our current research is focused on confirming the role of ASA in human sperm-zona pellucida adhesion and elucidating the precise cellular mechanisms that underpin the proteins translocation to the cell surface.


2000 ◽  
Vol 62 (5) ◽  
pp. 1201-1208 ◽  
Author(s):  
Toshio Hamatani ◽  
Kiyoo Tanabe ◽  
Kiyoshi Kamei ◽  
Nozomi Sakai ◽  
Yurie Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document