More than the usual suspect: diversity of pollinators of chayote (Sechium edule) at high elevations in Chiapas, Mexico

Apidologie ◽  
2021 ◽  
Author(s):  
Angélica Elizabeth Martínez-Bauer ◽  
Rémy Vandame ◽  
Gerardo Cerón-Martínez
Soil Horizons ◽  
1995 ◽  
Vol 36 (2) ◽  
pp. 49
Author(s):  
N. T. Hartgrove ◽  
R. L. Livingston ◽  
J. L. Branson ◽  
D. L. Newton
Keyword(s):  

Author(s):  
Diego Pires Ferraz Trindade ◽  
Meelis Pärtel ◽  
Carlos Pérez Carmona ◽  
Tiina Randlane ◽  
Juri Nascimbene

AbstractMountains provide a timely opportunity to examine the potential effects of climate change on biodiversity. However, nature conservation in mountain areas have mostly focused on the observed part of biodiversity, not revealing the suitable but absent species—dark diversity. Dark diversity allows calculating the community completeness, indicating whether sites should be restored (low completeness) or conserved (high completeness). Functional traits can be added, showing what groups should be focused on. Here we assessed changes in taxonomic and functional observed and dark diversity of epiphytic lichens along elevational transects in Northern Italy spruce forests. Eight transects (900–1900 m) were selected, resulting in 48 plots and 240 trees, in which lichens were sampled using four quadrats per tree (10 × 50 cm). Dark diversity was estimated based on species co-occurrence (Beals index). We considered functional traits related to growth form, photobiont type and reproductive strategy. Linear and Dirichlet regressions were used to examine changes in taxonomic metrics and functional traits along gradient. Our results showed that all taxonomic metrics increased with elevation and functional traits of lichens differed between observed and dark diversity. At low elevations, due to low completeness and harsh conditions, both restoration and conservation activities are needed, focusing on crustose species. Towards high elevations, conservation is more important to prevent species pool losses, focusing on macrolichens, lichens with Trentepohlia and sexual reproduction. Finally, dark diversity and functional traits provide a novel tool to enhance nature conservation, indicating particular threatened groups, creating windows of opportunities to protect species from both local and regional extinctions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Anzhen Fu ◽  
Qing Wang ◽  
Jianlou Mu ◽  
Lili Ma ◽  
Changlong Wen ◽  
...  

AbstractChayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi–C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 200
Author(s):  
Eric J. Gangloff ◽  
Sierra Spears ◽  
Laura Kouyoumdjian ◽  
Ciara Pettit ◽  
Fabien Aubret

Ectothermic animals living at high elevation often face interacting challenges, including temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have developed strategies to withstand these constraints, the factors preventing downslope migration are not always well understood. As mean temperatures continue to rise and climate patterns become more extreme, such translocation may be a viable conservation strategy for some populations or species, yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our study examines the effect of downslope translocation on ectothermic thermal physiology and performance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level). Specifically, we tested whether models of organismal performance developed from low-elevation species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation exhibited decreased thermal preferences and that the thermal performance curve for sprint speed shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an ecological context. Our study suggests that high-elevation specialists may be hindered in such novel oxygen environments and thus constrained in their capacity for downslope migration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pascal Bohleber ◽  
Margit Schwikowski ◽  
Martin Stocker-Waldhuber ◽  
Ling Fang ◽  
Andrea Fischer

AbstractDetailed knowledge of Holocene climate and glaciers dynamics is essential for sustainable development in warming mountain regions. Yet information about Holocene glacier coverage in the Alps before the Little Ice Age stems mostly from studying advances of glacier tongues at lower elevations. Here we present a new approach to reconstructing past glacier low stands and ice-free conditions by assessing and dating the oldest ice preserved at high elevations. A previously unexplored ice dome at Weißseespitze summit (3500 m), near where the “Tyrolean Iceman” was found, offers almost ideal conditions for preserving the original ice formed at the site. The glaciological settings and state-of-the-art micro-radiocarbon age constraints indicate that the summit has been glaciated for about 5900 years. In combination with known maximum ages of other high Alpine glaciers, we present evidence for an elevation gradient of neoglaciation onset. It reveals that in the Alps only the highest elevation sites remained ice-covered throughout the Holocene. Just before the life of the Iceman, high Alpine summits were emerging from nearly ice-free conditions, during the start of a Mid-Holocene neoglaciation. We demonstrate that, under specific circumstances, the old ice at the base of high Alpine glaciers is a sensitive archive of glacier change. However, under current melt rates the archive at Weißseespitze and at similar locations will be lost within the next two decades.


2013 ◽  
Vol 4 ◽  
Author(s):  
Peter J. Hemond ◽  
Michael P. O’Boyle ◽  
Zoe Hemond ◽  
Vernon L. Gay ◽  
Kelly Suter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document