scholarly journals Correction to: Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island, China

2020 ◽  
Vol 77 (4) ◽  
Author(s):  
J. Aaron Hogan ◽  
Oscar J. Valverde-Barrantes ◽  
Qiong Ding ◽  
Han Xu ◽  
Christopher Baraloto
2020 ◽  
Vol 77 (3) ◽  
Author(s):  
J. Aaron Hogan ◽  
Oscar J. Valverde-Barrantes ◽  
Qiong Ding ◽  
Han Xu ◽  
Christopher Baraloto

2020 ◽  
Author(s):  
David Medvigy ◽  
Chris Smith-Martin ◽  
Seth Parker ◽  
Alyssa Willson ◽  
Isabelle Marechaux ◽  
...  

<p>Lianas, or woody vines, are abundant throughout forests worldwide, but are especially common in the tropics. Their presence can strongly suppress tree wood production, and presumably also reduce the strength of the tropical forest carbon sink. In intact neotropical forests, liana presence has been increasing over the past few decades, though the mechanisms remain under debate. Vexingly, lianas are not represented at all in current-day climate models. Better knowledge of liana morphology and allocation is required to unravel the mechanisms of below- and aboveground liana-tree competition in tropical forests. Such knowledge is also an essential step toward incorporating lianas into mechanistic forest dynamics models. To address these liana knowledge gaps, we have initiated a new project that integrates empirical and modeling work. Our objectives in this presentation are to compare observed liana allocation patterns to allocation patterns predicted by theory, and then to demonstrate how these results can be integrated into a numerical model.</p><p>Empirical measurements are being carried out in tropical dry forests in Guanacaste, Costa Rica. These measurements will eventually include excavations of ~80 entire trees and lianas, which will enable measurements of belowground and aboveground biomass of co-occurring trees and lianas, coarse and fine root vertical distribution, and lateral root spread. Also being measured are liana traits (including several critical hydraulic traits), above- and belowground productivity, and species-level fine root productivity. The modeling work includes the incorporation of lianas into the TROLL model, which is a mechanistic, individual-based forest dynamics model. The model will simulate the unique features of lianas, accounting for their structural parasitism and their different allocation strategies and morphology compared to trees. The simulated trees and lianas will compete aboveground for light and belowground for water. Thus, the model will integrate above- and belowground processes and couple the carbon and water cycles. Traits measured as part of this project are being used to parameterize the model.</p><p>Thus far, 33 mature, canopy-exposed individuals (18 trees and 15 lianas) have been harvested and analyzed. For both trees and lianas, biomass partitioning to roots, stems, and leaves were consistent with the predictions of allometric biomass partitioning theory. This result thwarted our initial expectation that lianas, with their narrow-diameter stems, would allocate proportionally less to stems than trees. We also found that vertical root profiles varied across life forms: lianas had the shallowest roots, evergreen trees had the deepest roots, and deciduous trees had intermediate rooting depths. The liana root systems also had notably broader lateral extents than the tree root systems. These results run contrary to previous work that reported that lianas were relatively deeply-rooted.</p><p>Our empirical results have helped to motivate model development. Each of our modeled liana individuals is assigned a laterally-widespread root system that can potentially extend beneath many trees. The liana root system is then permitted to put up aboveground shoots that associate with trees within the footprint of the root system. Comparisons of simulated and observed above- and belowground productivity are currently being conducted to help evaluate model assumptions.</p>


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 953
Author(s):  
Wang ◽  
Brunner ◽  
Zong ◽  
Li

Research Highlights: A detailed picture of the seasonality in fine root biomass (FRB), necromass (FRN), and the biomass/necromass ratio (FRBN) throughout the whole year is crucial to uncover profound effects of long-term environmental changes on fine root dynamics. Materials and Methods: We used meta-analysis to characterize the variability of FRB, FRN and FRBN, and determined their relations with climatic (monthly versus annual), edaphic and geomorphic factors for tropical, temperate and boreal forest biomes across the Northern Hemisphere. Results: Boreal forests exhibited the highest FRB and FRN, while tropical forests yielded the lowest FRN, and thus the greatest FRBN. FRB and FRN significantly decreased with sampling depth, but increased with soil organic carbon content and elevation, while an opposite pattern was found for FRBN. Temperature and precipitation at different time scales (monthly versus annual) and latitude had varying influences on fine roots. High FRB and FRN were observed during dry season for tropical forests, but in the late growing season for temperate forests. The three forest biomes exhibited the high root activity (measured as FRBN) in June or July. Conclusions: It is crucial to realize the universal and specific responses of fine roots to multiple environmental factors when attempting to incorporate these parameters into fine root monthly dynamic models in forest ecosystems. The biome-specific fluctuation of fine roots contributes to identify the influence factors on fine root seasonal patterns throughout the whole year. Our analysis is expected to improve the understanding of the key role of fine roots at monthly level in modeling and predicting carbon budget of various forest biomes under future climate change.


2007 ◽  
Vol 30 (7) ◽  
pp. 786-795 ◽  
Author(s):  
T. L. BAUERLE ◽  
D. M. EISSENSTAT ◽  
J. GRANETT ◽  
D. M. GARDNER ◽  
D. R. SMART

Biotropica ◽  
10.1646/02022 ◽  
2003 ◽  
Vol 35 (2) ◽  
pp. 143
Author(s):  
Dietrich Hertel ◽  
Christoph Leuschner ◽  
Dirk Hölscher

2013 ◽  
Vol 23 (6) ◽  
pp. 754-759 ◽  
Author(s):  
Taryn L. Bauerle ◽  
William L. Bauerle ◽  
Marc Goebel ◽  
David M. Barnard

Substrate moisture sensors offer an affordable monitoring system for containerized tree production. However, root system distribution can vary greatly among species within ornamental container production systems, resulting in variation within substrate readings among sensors within a container. The aim of this study was to examine the relationship of substrate moisture sensor readings in six ornamental trees to their root distribution patterns within a container. Following root anatomical analysis, tree root systems were dissected by root order as a means to separate fine (uptake) roots and coarse (transport) roots. Substrate moisture variability was measured through the deployment of 12 substrate moisture sensors per container. Of the tree species studied, we found the following two patterns of root distribution: a shallow, “conical-shaped,” root system, with the broadest portion of the root system in the shallow soil layer, and a more evenly distributed “cylindrical-shaped” root system. Root system distribution type influenced substrate moisture reading variability. Conical root systems had lower substrate moisture variability and high fine root variability, whereas the opposite was true for cylindrical root systems—most likely due to the larger, coarse woody mass of roots. We were unable to find any correlations between fine root morphological features including root diameter, length, or surface area and substrate moisture variability. However, higher specific root length was associated with higher substrate moisture variability. Classifying a tree’s root system by its growth and distribution within a container can account for variation in substrate moisture readings and help inform future decisions on sensor placement within containerized systems.


Author(s):  
Roger W. Ruess ◽  
Ronald L. Hendrick

The patterns of production described in Chapter 11 tell only half of the story about boreal forest production because a large proportion of the carbon (C) acquired by plants is allocated belowground in ways that have traditionally been extremely difficult to quantify. Work in the Bonanza Creek LTER provides considerable insight into the patterns, causes, and consequences of this belowground C allocation. Belowground allocation has a number of important ecosystem consequences beyond the simple fact that C allocated belowground comes at the expense of aboveground growth. Belowground and aboveground tissues differ substantially in the rates of C and nitrogen (N) incorporation into new tissue, the ratio of growth to respiration, and the rate of tissue decay. For example, despite the small biomass of fine roots relative to aboveground tissues in forest ecosystems, disproportionate amounts of C and N cycle annually through fine roots, which grow, die, and decompose very rapidly and have high N concentrations (Hendrick and Pregitzer 1992, Ruess et al. 1996, 2003). The objectives of this chapter are to (1) summarize our understanding of the structure and function of fine-root systems in forest types within the Bonanza Creek Experimental Forest, (2) compare our findings with the results of studies of other boreal and temperate ecosystems in order to develop a broader understanding of fine-root function, and (3) identify critical research gaps in our understanding of the role of fine-root systems in boreal ecosystem function. Fine roots grow more rapidly than the rest of the root system in a forest and are responsible for the bulk of nutrient and water acquisition. Until recently, fine roots were defined rather arbitrarily as roots less than 1–2 mm in diameter, while roots larger than this were considered coarse roots. Only one data set for fine and coarse root biomass has been published for interior Alaskan forests (Ruess et al. 1996), which shows (1) live fine-root biomass ranging from 221 g m-2 in floodplain white spruce stands to 832 g m-2 in upland birch-aspen stands, (2) a positive correlation between fine-root and coarse-root biomass, with coarse-root biomass averaging 50% greater than fine roots, and (3) no relationship between aboveground biomass and fine or coarse root biomass.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Lingyan Zhou ◽  
Fude Liu ◽  
Wenjie Yang ◽  
Hong Liu ◽  
Hongbo Shao ◽  
...  

Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the host plantsPhotinia prunifoliacolonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves. Our results found that the colonization of lichens significantly decreased leaf water content (LWC), chlorophyll (Chl) a and a + b content, and Chl a/b ofP. prunifoliabut increased Chl b content, while that of liverworts did not affect them as a whole. The variations of net photosynthetic rates(Pn)among host leaves colonized with different coverage of lichens before or after removal treatment (a treatment to remove epiphylls from leaf surface) were greater than that colonized with liverworts. The full cover of lichens induced an increase of light compensation point (LCP) by 21% and a decrease of light saturation point (LSP) by 54% for their host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited more negative effects on the leaf traits ofP. prunifoliain different stages of colonization. The results suggest that the responses of host leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions of epiphylls in tropical forests.


Sign in / Sign up

Export Citation Format

Share Document