boreal ecosystem
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Fangfang Kang ◽  
Xuejian Li ◽  
Huaqiang Du ◽  
Fangjie Mao ◽  
Guomo Zhou ◽  
...  

Carbon flux is the main basis for judging the carbon source/sink of forest ecosystems. Bamboo forests have gained much attention because of their high carbon sequestration capacity. In this study, we used a boreal ecosystem productivity simulator (BEPS) model to simulate the gross primary productivity (GPP) and net primary productivity (NPP) of bamboo forests in China during 2001–2018, and then explored the spatiotemporal evolution of the carbon fluxes and their response to climatic factors. The results showed that: (1) The simulated and observed GPP values exhibited a good correlation with the determination coefficient (R2), root mean square error (RMSE), and absolute bias (aBIAS) of 0.58, 1.43 g C m−2 day−1, and 1.21 g C m−2 day−1, respectively. (2) During 2001–2018, GPP and NPP showed fluctuating increasing trends with growth rates of 5.20 g C m−2 yr−1 and 3.88 g C m−2 yr−1, respectively. The spatial distribution characteristics of GPP and NPP were stronger in the south and east than in the north and west. Additionally, the trend slope results showed that GPP and NPP mainly increased, and approximately 30% of the area showed a significant increasing trend. (3) Our study showed that more than half of the area exhibited the fact that the influence of the average annual precipitation had positive effects on GPP and NPP, while the average annual minimum and maximum temperatures had negative effects on GPP and NPP. On a monthly scale, our study also demonstrated that the influence of precipitation on GPP and NPP was higher than that of the influence of temperature on them.


2021 ◽  
Vol 13 (20) ◽  
pp. 4075
Author(s):  
Bin Chen ◽  
Xuehe Lu ◽  
Shaoqiang Wang ◽  
Jing M. Chen ◽  
Yang Liu ◽  
...  

In terrestrial ecosystems, leaves are aggregated into different spatial structures and their spatial distribution is non-random. Clumping index (CI) is a key canopy structural parameter, characterizing the extent to which leaf deviates from the random distribution. To assess leaf clumping effects on global terrestrial ET, we used a global leaf area index (LAI) map and the latest version of global CI product derived from MODIS BRDF data as well as the Boreal Ecosystem Productivity Simulator (BEPS) to estimate global terrestrial ET. The results show that global terrestrial ET in 2015 was 511.9 ± 70.1 mm yr−1 for Case I, where the true LAI and CI are used. Compared to this baseline case, (1) global terrestrial ET is overestimated by 4.7% for Case II where true LAI is used ignoring clumping; (2) global terrestrial ET is underestimated by 13.0% for Case III where effective LAI is used ignoring clumping. Among all plant functional types (PFTs), evergreen needleleaf forests were most affected by foliage clumping for ET estimation in Case II, because they are most clumped with the lowest CI. Deciduous broadleaf forests are affected by leaf clumping most in Case III because they have both high LAI and low CI compared to other PFTs. The leaf clumping effects on ET estimation in both Case II and Case III is robust to the errors in major input parameters. Thus, it is necessary to consider clumping effects in the simulation of global terrestrial ET, which has considerable implications for global water cycle research.


2021 ◽  
Vol 13 (18) ◽  
pp. 3567
Author(s):  
Xinyao Xie ◽  
Ainong Li ◽  
Huaan Jin ◽  
Jinhu Bian ◽  
Zhengjian Zhang ◽  
...  

Light Use Efficiency (LUE), Vegetation Index (VI)-based, and process-based models are the main approaches for spatially continuous gross primary productivity (GPP) estimation. However, most current GPP models overlook the effects of topography on the vegetation photosynthesis process. Based on the structures of a two-leaf LUE model (TL-LUE), a VI-based model (temperature and greenness, TG), and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS), three models, named mountain TL-LUE (MTL-LUE), mountain TG (MTG), and BEPS-TerrainLab, have been proposed to improve GPP estimation over mountainous areas. The GPP estimates from the three mountain models have been proven to align more closely with tower-based GPP than those from the original models at the site scale, but their abilities to characterize the spatial variation of GPP at the watershed scale are not yet known. In this work, the GPP estimates from three LUE models (i.e., MOD17, TL-LUE, and MTL-LUE), two VI-based models (i.e., TG and MTG), and two process-based models (i.e., BEPS and BEPS-TerrainLab) were compared for a mountainous watershed. At the watershed scale, the annual GPP estimates from MTL-LUE, MTG, and BTL were found to have a higher spatial variation than those from the original models (increasing the spatial coefficient of variation by 6%, 8%, and 22%), highlighting that incorporating topographic information into GPP models might improve understanding of the high spatial heterogeneity of the vegetation photosynthesis process over mountainous areas. Obvious discrepancies were also observed in the GPP estimates from MTL-LUE, MTG, and BTL, with determination coefficients ranging from 0.02–0.29 and root mean square errors ranging from 399–821 gC m−2yr−1. These GPP discrepancies mainly stem from the different (1) structures of original LUE, VI, and process models, (2) assumptions associated with the effects of topography on photosynthesis, (3) input data, and (4) values of sensitive parameters. Our study highlights the importance of considering surface topography when modeling GPP over mountainous areas, and suggests that more attention should be given to the discrepancy of GPP estimates from different models.


2021 ◽  
Vol 13 (13) ◽  
pp. 2522
Author(s):  
Lkhagvadorj Nanzad ◽  
Jiahua Zhang ◽  
Battsetseg Tuvdendorj ◽  
Shanshan Yang ◽  
Sonam Rinzin ◽  
...  

Drought has devastating impacts on agriculture and other ecosystems, and its occurrence is expected to increase in the future. However, its spatiotemporal impacts on net primary productivity (NPP) in Mongolia have remained uncertain. Hence, this paper focuses on the impact of drought on NPP in Mongolia. The drought events in Mongolia during 2003–2018 were identified using the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI). The Boreal Ecosystem Productivity Simulator (BEPS)-derived NPP was computed to assess changes in NPP during the 16 years, and the impacts of drought on the NPP of Mongolian terrestrial ecosystems was quantitatively analyzed. The results showed a slightly increasing trend of the growing season NPP during 2003–2018. However, a decreasing trend of NPP was observed during the six major drought events. A total of 60.55–87.75% of land in the entire country experienced drought, leading to a 75% drop in NPP. More specifically, NPP decline was prominent in severe drought areas than in mild and moderate drought areas. Moreover, this study revealed that drought had mostly affected the sparse vegetation NPP. In contrast, forest and shrubland were the least affected vegetation types.


2021 ◽  
Vol 771 ◽  
pp. 144817
Author(s):  
Hedvig Kriszta Csapó ◽  
Michał Grabowski ◽  
Jan Marcin Węsławski

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 821
Author(s):  
Min Yan ◽  
Mei Xue ◽  
Li Zhang ◽  
Xin Tian ◽  
Bowei Chen ◽  
...  

In this study, we simulated vegetation net primary productivity (NPP) using the boreal ecosystem productivity simulator (BEPS) between 2003 and 2012 over Northeast China, a region that is significantly affected by climate change. The NPP was then validated against the measurements that were calculated from tree ring data, with a determination coefficient (R2) = 0.84 and the root mean square error (RMSE) = 42.73 gC/m2·a. Overall, the NPP showed an increasing trend over Northeast China, with the average rate being 4.48 gC/m2·a. Subsequently, partial correlation and lag analysis were conducted between the NPP and climatic factors. The partial correlation analysis suggested that temperature was the predominant factor that accounted for changes in the forest NPP. Solar radiation was the main factor that affected the forest NPP, and the grass NPP was the most closely associated with precipitation. The relative humidity substantially affected the annual variability of the shrub and crop NPPs. The lag time of the NPP related to precipitation increased with the vegetation growth, and it was found that the lag period of the forest was longer than that of grass and crops, whereas the cumulative lag month of the forest was shorter. This comprehensive analysis of the response of the vegetation NPP to climate change can provide scientific references for the managing departments that oversee relevant resources.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 647
Author(s):  
Lkhagvadorj Nanzad ◽  
Jiahua Zhang ◽  
Gantsetseg Batdelger ◽  
Til Prasad Pangali Sharma ◽  
Upama Ashish Koju ◽  
...  

Global warming threatens ecosystem functions, biodiversity, and rangeland productivity in Mongolia. The study analyzes the spatial and temporal distributions of the Net Primary Production (NPP) and its response to climatic parameters. The study also highlights how various land cover types respond to climatic fluctuations from 2003 to 2018. The Boreal Ecosystem Productivity Simulator (BEPS) model was used to simulate the rangeland NPP of the last 16 years. Satellite remote sensing data products were mainly used as input for the model, where ground-based and MODIS NPP were used to validate the model result. The results indicated that the BEPS model was moderately effective (R2 = 0.59, the Root Mean Square Error (RMSE) = 13.22 g C m−2) to estimate NPP for Mongolian rangelands (e.g., grassland and sparse vegetation). The validation results also showed good agreement between the BEPS and MODIS estimates for all vegetation types, including forest, shrubland, and wetland (R2 = 0.65). The annual total NPP of Mongolia showed a slight increment with an annual increase of 0.0007 Pg (0.68 g C per meter square) from 2003 to 2018 (p = 0.82) due to the changes in climatic parameters and land cover change. Likewise, high increments per unit area found in forest NPP, while decreased NPP trend was observed in the shrubland. In conclusion, among the three climatic parameters, temperature was the factor with the largest influence on NPP variations (r = 0.917) followed precipitation (r = 0.825), and net radiation (r = 0.787). Forest and wetland NPP had a low response to precipitation, while inter-annual NPP variation shows grassland, shrubland, and sparse vegetation were highly sensitive rangeland types to climate fluctuations.


2021 ◽  
Author(s):  
Lena Schreiner ◽  
Katja Grossmann ◽  
André Butz ◽  
Sanam N. Vardag ◽  
Eva-Marie Schömann

<p>The Eurasian boreal ecosystem acts as a major terrestrial carbon sink in the northern hemisphere. Under changing climatic conditions, it is crucial to monitor biogenic carbon fluxes in this area. The Siberian in-situ CO<sub>2</sub> data are, however, sparse in spatial coverage and limit model-validation there. Satellite observations of CO<sub>2</sub> and Sun-Induced Fluorescence (SIF) can provide essential information to constrain the Eurasian boreal biogenic carbon-cycle and further, to improve carbon cycle inverse models.</p><p>In this study, we investigate the Eurasian boreal carbon cycle with satellite observations of the Orbiting Carbon Observatory 2 (OCO-2) and the Greenhouse gase Observing SATellite (GOSAT). We compare the observed carbon cycle dynamics to model data such as provided by CarbonTracker (CT2019, CT-NRT.v2020-1) and find differences in the ppm range. Various sensitivity studies with respect to region selection, sampling biases and model choices are used to consolidate the robustness of the detected pattern. Using SIF and FLUXCOM GPP data, we will show first attempts to attribute the model-measurement differences to uncertainties in biogenic carbon fluxes.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Federica Badino ◽  
Roberta Pini ◽  
Paolo Bertuletti ◽  
Cesare Ravazzi ◽  
Barbara Delmonte ◽  
...  

Abstract A 3800 year-long radiocarbon-dated and highly-resolved palaeoecological record from Lake Fimon (N-Italy) served to investigate the effects of potential teleconnections between North Atlantic and mid-to-low latitudes at the transition from Marine Isotope Stage (MIS) 3 to 2. Boreal ecosystems documented in the Fimon record reacted in a sensitive way to millennial and sub-millennial scale Northern Hemisphere atmospheric circulation patterns. The high median time-resolution of 58 years allows the identification of five abrupt event-boundaries (i.e., main forest expansion and decline excursions) synchronous with the sharp stadial/interstadial (GS/GI) transitions within dating uncertainties. During Heinrich Stadial 3 (HS 3) we reconstruct more open and dry conditions, compared to the other GS, with a dominant regional scale fire signal. Linkages between local fires and climate-driven fuel changes resulted in high-magnitude fire peaks close to GI/GS boundaries, even exacerbated by local peatland conditions. Finally, palaeoecological data from the HS 3 interval unveiled an internal variability suggesting a peak between 30,425 and 29,772 cal BP (2σ error) which matches more depleted δ18O values in alpine speleothems. We hypothesise that this signal, broadly resembling that of other mid-latitudes proxies, may be attributed to the southward shift of the Northern Hemisphere storm tracks and the associated delayed iceberg discharge events as documented during other HS.


Author(s):  
Evgeny Abakumov ◽  
Sergey Loiko ◽  
Nikolay Lashchinsky ◽  
Georgy Istigechev ◽  
Anastasia Kulemzina ◽  
...  

Boreal forests are one of the largest stores of carbon on Earth, and two-thirds of them are located in Siberia. Despite the fact that these forests have a significant influence on the global climate, they continue to remain understudied. Chernevaya taiga is a unique example of a highly productive Siberian boreal ecosystem. This type of forest is characterized by a series of unique ecological traits, the most notable of which are the gigantism of the perennial herbaceous plants and bushes, complete lack of moss cover on soil surface, and the type of soil it grows on, notable for its particularly high rate of decomposition of vegetative remains and low humic acid content. Abundant rainfall actively washes out nutrients from the top layers of the soil, but its fertility level remains very high. In fact, based on the existing data, it is twice as high as that of fertilized agricultural lands. In some ways the conditions within this type of forest closely resemble those observed in tropical rainforests. Microbiota associated with soil and plants represent an integral part of an interconnected system and contribute significantly to productive processes in soils. Its impacts on the environment require further study, since it could lead to discoveries that will help improve soil fertility without harming the natural environment.


Sign in / Sign up

Export Citation Format

Share Document