Roles of Stipules Include Determination of Flowering Time and Pod Harvest Index in Garden Pea Grain Legume Pisum sativum

2012 ◽  
Vol 35 (5) ◽  
pp. 449-456 ◽  
Author(s):  
Vishakha Sharma ◽  
Sushil Kumar
2008 ◽  
Vol 118 (2) ◽  
pp. 259-273 ◽  
Author(s):  
Silke Stracke ◽  
Grit Haseneyer ◽  
Jean-Baptiste Veyrieras ◽  
Hartwig H. Geiger ◽  
Sascha Sauer ◽  
...  

Planta ◽  
1984 ◽  
Vol 161 (4) ◽  
pp. 302-307 ◽  
Author(s):  
C. L. Díaz ◽  
P. Lems-van Kan ◽  
I. A. M. Van der Schaal ◽  
J. W. Kijne

2021 ◽  
pp. 331-377
Author(s):  
Amal M. E. Abdel-Hamid ◽  
Khaled F. M. Salem

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1537
Author(s):  
Oscar Checa ◽  
Marino Rodriguez ◽  
Xingbo Wu ◽  
Matthew Blair

The pea (Pisum sativum L.) is one of the most important crops in temperate agriculture around the world. In the tropics, highland production is also common with multiple harvests of nearly mature seeds from climbing plant types on trellises. While the leafless variant caused by the afila gene is widely used in developing row-cropped field peas in Europe, its use for trellised garden peas has not been reported. In this study we describe a pea breeding program for a high-elevation tropical environment in the Department of Nariño in Colombia, where over 16,000 hectares of the crop are produced. The most widespread climbing varieties in the region are ‘Andina’ and ‘Sindamanoy’, both of which have high-biomass architecture with abundant foliage. They are prone to many diseases, but preferred by farmers given their long production season. This plant type is expensive to trellis, with wooden posts and plastic strings used for vine staking constituting 52% of production costs. The afila trait could reduce these costs by creating interlocking plants as they do in field peas. Therefore, our goal for this research was to develop a rapid breeding method to introduce the recessive afila gene, which replaces leaves with tendrils, into the two commercial varieties used as recurrent parents (RPs) with three donor parents (DPs)—‘Dove’, ‘ILS3575′ and ‘ILS3568′—and to measure the effect on plant height (PH) and yield potential. Our hypothesis was that the afila gene would not cause linkage drag while obtaining a leafless climbing pea variety. Backcrossing was conducted without selfing for two generations and plants were selected to recover recurrent parent characteristics. Chi-square tests showed a ratio of 15 normal leaved to one afila leaved in the BC2F2 plants, and 31:1 in the BC3F2 generation. Selecting in the last of these generations permitted a discovery of tall climbing plants that were similar to those preferred commercially, but with the stable leafless afila. The method saved two seasons compared to the traditional method of progeny testing before each backcross cycle; the peas reached the BC2F2 generation in five seasons and the BC3F2 in seven seasons. This is advantageous with trellised peas that normally require half a year to reach maturity. Leafless garden peas containing the afila gene were of the same height as recurrent parents and, by the third backcross, were equally productive, without the high biomass found in the traditional donor varieties. The value of the afila gene and the direct backcrossing scheme is discussed in terms of garden pea improvement and crop breeding.


2016 ◽  
Vol 155 (6) ◽  
pp. 857-875 ◽  
Author(s):  
I. M. RAO ◽  
S. E. BEEBE ◽  
J. POLANIA ◽  
M. GRAJALES ◽  
C. CAJIAO ◽  
...  

SUMMARYCommon bean (Phaseolus vulgaris L.) is the most important food legume for human consumption. Drought stress is the major abiotic stress limitation of bean yields in smallholder farming systems worldwide. The current work aimed to determine the role of enhanced photosynthate mobilization to improve adaptation to intermittent and terminal drought stress and to identify a few key adaptive traits that can be used for developing drought-resistant genotypes. Field studies were conducted over three seasons at Centro Internacional de Agricultura Tropical, Palmira, Colombia to determine genotypic differences in adaptation to intermittent (two seasons) and terminal (one season) drought stress compared with irrigated conditions. A set of 36 genotypes, including 33 common bean, two wild bean and one cowpea were evaluated using a 6 × 6 lattice design under irrigated and rainfed field conditions. Three common bean elite lines (NCB 226, SEN 56, SER 125) were identified with superior levels of adaptation to both intermittent and terminal drought stress conditions. The greater performance of these lines under drought stress was associated with their ability to remobilize photosynthate to increase grain yield based on higher values of harvest index, pod harvest index, leaf area index and canopy biomass. Two wild bean germplasm accessions (G 19902, G 24390) showed very poor adaptation to both types of drought stress. One small-seeded black line (NCB 226) was superior in combining greater values of canopy biomass with greater ability to mobilize photosynthates to grain under both types of drought stress. Two small-seeded red lines (SER 78, SER 125) seem to combine the desirable traits of enhanced mobilization of photosynthates to seed with effective use of water through canopy cooling under terminal drought stress. Pod harvest index showed significant positive association with grain yield under both types of drought stress and this trait can be used by breeders as an additional selection method to grain yield in evaluation of breeding populations for both types of drought stress.


Sign in / Sign up

Export Citation Format

Share Document