Blast Load Analysis of Pre-twisted Steel Columns

2019 ◽  
Vol 100 (2) ◽  
pp. 261-273
Author(s):  
Nivin Philip ◽  
Theresa Paul
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Haitham Al-Thairy

The main objective of this study is the numerical simulation of the behaviour and failure patterns of steel columns under blast loads using the dynamic finite element package ABAQUS/Explicit. A numerical model is suggested and validated against published experimental tests on full-scale wide-flange steel columns subjected to dynamic blast loads under constant axial compressive force. Afterwards, the validated model is used to investigate the effect of important parameters on the behaviour and failure patterns of steel columns under blast pressure through an extensive parametric study. The parameters include the blast impulse, the blast energy, the blast load, the blast duration, the column boundary condition, the column slenderness ratio, and the blast direction. The conclusions extracted from this parametric study may be used to develop a thorough understanding of the behaviour and failure of steel columns subjected to blast load which, in turn, could lead to a more accurate practical design procedure. The study also presents derivations and validations of a proposed analytical approach to calculate the critical blast impulse at which a steel column losses its global stability. Comparison between the critical impulse-axial force curves obtained from the proposed equation and that extracted from numerical simulations indicates the validity and feasibility of the proposed equation.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 70 ◽  
Author(s):  
Robert Studziński ◽  
Tomasz Gajewski ◽  
Michał Malendowski ◽  
Wojciech Sumelka ◽  
Hasan Al-Rifaie ◽  
...  

In this paper, an experimental investigation is presented for sandwich panels with various core layer materials (polyisocyanurate foam, mineral wool, and expanded polystyrene) when subjected to a justified blast load. The field tests simulated the case for when 5 kg of trinitrotoluene (TNT) is localized outside a building’s facade with a 5150 mm stand-off distance. The size and distance of the blast load from the obstacle can be understood as the case of both accidental action and a real terroristic threat. The sandwich panels have a nominal thickness, with the core layer equal 100 mm and total exterior dimensions of 1180 mm × 3430 mm. Each sandwich panel was connected with two steel columns made of I140 PE section using three self-drilling fasteners per panel width, which is a standard number of fasteners suggested by the producers. The steel columns were attached to massive reinforced concrete blocks via wedge anchors. The conducted tests revealed that the weakest links of a single sandwich panel, subjected to a blast load, were both the fasteners and the strength of the core. Due to the shear failure of the fasteners, the integrity between the sandwich panel and the main structure is not provided. A comparison between the failure mechanisms for continuous (polyisocyanurate foam and expanded polystyrene) and non-continuous (mineral wool) core layer materials were conducted.


2019 ◽  
Vol 1264 ◽  
pp. 012008 ◽  
Author(s):  
Warren Antonio Tan ◽  
Eric Augustus Tingatinga ◽  
Victoria Alvarez

Author(s):  
Fereydoon Omidinasab ◽  
Peyman Beiranvand ◽  
Saeideh Sadeghi Golmakani ◽  
Mohammad Zarei

Concrete-filled steel columns have been extensively used in the world due to having all suitable characteristics of concrete and steel, more ductility, increasing concrete confinement using steel wall, large energy-absorption capacity and appropriate fire behavior. In present paper, concrete-filled steel square columns have been simulated under the influence of blast load using ABAQUS software. These responses will be compared for scaled distances based on the distance to source and weight of explosive material. As result, it can be seen that although concrete deformation has been restricted using steel tube, but inner layer of concrete has been seriously damaged and column displacement will be decreased by increasing scaled distance. We also concluded that concrete-filled steel columns have high ductility and blast resistance.


Author(s):  
S. Palanivelu ◽  
W. Van Paepegem ◽  
J. Degrieck ◽  
K. De Wolf ◽  
J. Vantomme ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document