Anti-corrosion properties of stainless steel 304L coated with Mn-based thin film and annealed with nitrogen flux exposed to saline solution under various temperatures

2020 ◽  
Vol 14 (3) ◽  
pp. 223-236
Author(s):  
Farzaneh Modiri ◽  
Hadi Savaloni
2013 ◽  
Vol 61 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mojtaba Nasr-Esfahani ◽  
Mehdi Pourriahi ◽  
Abolfazl Motalebi ◽  
Mahmoud Zendehdel

Purpose – The purpose of this investigation was to study the corrosion protection and structural characteristics of a hybrid organic-inorganic thin film preloaded with green corrosion inhibitor for anticorrosive protection of stainless steel 304L. Design/methodology/approach – An ethanol solution of the polymerized 3-methacryloxypropyltrimethoxysilan and tetraethylorthosilicate was mixed with henna extract to give homogeneous sols. The morphology, composition and adhesion of hybrid sol-gel coatings were examined by SEM, EDX and pull-off tests, respectively. The surface chemistry of the hybrid sol-gel coatings was investigated with polarization scans and electrochemical impedance spectroscopy (EIS) in the physiological saline solution. Findings – The polarization curves and EIS data were in agreement. Henna extract additions significantly increased the corrosion protection capability of the sol-gel thin film to greater than 85 percent in the physiological saline solution. In addition, the doped hybrid coating on stainless steel 304L was useful in 3.5 percent NaCl solution. Originality/value – There have been few reports on the hybrid organic-inorganic thin films preloaded with corrosion inhibitor, as described in the paper, and this environmentally friendly coating on stainless steel 304L was found to be highly effective for industrial applications.


Author(s):  
paola baia ◽  
Diego Jorge Alves Borges ◽  
Danyella Crystyane Silva Cardoso ◽  
Victor Ferreira ◽  
Paulo Assunção ◽  
...  

2020 ◽  
Vol 62 (10) ◽  
pp. 993-997
Author(s):  
Kanrayaphus Tipves ◽  
Gobboon Lothongkum ◽  
Anchaleeporn Waritswat Lothongkum

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 748
Author(s):  
Katayoon Kalantari ◽  
Bahram Saleh ◽  
Thomas J. Webster

Metallic materials are widely used for fabricating medical implants due to their high specific strength, biocompatibility, good corrosion properties, and fatigue resistance. Recently, titanium (Ti) and its alloys, as well as stainless steel (SS), have attracted attention from researchers because of their biocompatibility properties within the human body; however, improvements in mechanical properties while keeping other beneficial properties unchanged are still required. Severe plastic deformation (SPD) is a unique process for fabricating an ultra-fine-grained (UFG) metal with micrometer- to nanometer-level grain structures. SPD methods can substantially refine grain size and represent a promising strategy for improving biological functionality and mechanical properties. This present review paper provides an overview of different SPD techniques developed to create nano-/ultra-fine-grain-structured Ti and stainless steel for improved biomedical implant applications. Furthermore, studies will be covered that have used SPD techniques to improve bone cell proliferation and function while decreasing bacterial colonization when cultured on such nano-grained metals (without resorting to antibiotic use).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aziz Ahmed ◽  
Seungwoo Han

AbstractN-type bismuth telluride (Bi2Te3) thin films were prepared on an aluminum nitride (AlN)-coated stainless steel foil substrate to obtain optimal thermoelectric performance. The thermal co-evaporation method was adopted so that we could vary the thin film composition, enabling us to investigate the relationship between the film composition, microstructure, crystal preferred orientation and thermoelectric properties. The influence of the substrate temperature was also investigated by synthesizing two sets of thin film samples; in one set the substrate was kept at room temperature (RT) while in the other set the substrate was maintained at a high temperature, of 300 °C, during deposition. The samples deposited at RT were amorphous in the as-deposited state and therefore were annealed at 280 °C to promote crystallization and phase development. The electrical resistivity and Seebeck coefficient were measured and the results were interpreted. Both the transport properties and crystal structure were observed to be strongly affected by non-stoichiometry and the choice of substrate temperature. We observed columnar microstructures with hexagonal grains and a multi-oriented crystal structure for the thin films deposited at high substrate temperatures, whereas highly (00 l) textured thin films with columns consisting of in-plane layers were fabricated from the stoichiometric annealed thin film samples originally synthesized at RT. Special emphasis was placed on examining the nature of tellurium (Te) atom based structural defects and their influence on thin film properties. We report maximum power factor (PF) of 1.35 mW/m K2 for near-stoichiometric film deposited at high substrate temperature, which was the highest among all studied cases.


Sign in / Sign up

Export Citation Format

Share Document