scholarly journals Electrochemical and AFM Study of Inhibitory Properties of Thin Film Formed by Tartrazine Food Additive on 304L Stainless Steel in Saline Solution

Author(s):  
Adriana Samide ◽  
2016 ◽  
Vol 06 (10) ◽  
pp. 275-288 ◽  
Author(s):  
Gabriel de la Rosa-Santana ◽  
Jose Alfredo Alvarez-Chavez ◽  
Hector R. Morano-Okuno ◽  
Angel J. Morales-Ramirez ◽  
Esmeralda Uribe

2013 ◽  
Vol 61 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mojtaba Nasr-Esfahani ◽  
Mehdi Pourriahi ◽  
Abolfazl Motalebi ◽  
Mahmoud Zendehdel

Purpose – The purpose of this investigation was to study the corrosion protection and structural characteristics of a hybrid organic-inorganic thin film preloaded with green corrosion inhibitor for anticorrosive protection of stainless steel 304L. Design/methodology/approach – An ethanol solution of the polymerized 3-methacryloxypropyltrimethoxysilan and tetraethylorthosilicate was mixed with henna extract to give homogeneous sols. The morphology, composition and adhesion of hybrid sol-gel coatings were examined by SEM, EDX and pull-off tests, respectively. The surface chemistry of the hybrid sol-gel coatings was investigated with polarization scans and electrochemical impedance spectroscopy (EIS) in the physiological saline solution. Findings – The polarization curves and EIS data were in agreement. Henna extract additions significantly increased the corrosion protection capability of the sol-gel thin film to greater than 85 percent in the physiological saline solution. In addition, the doped hybrid coating on stainless steel 304L was useful in 3.5 percent NaCl solution. Originality/value – There have been few reports on the hybrid organic-inorganic thin films preloaded with corrosion inhibitor, as described in the paper, and this environmentally friendly coating on stainless steel 304L was found to be highly effective for industrial applications.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-193-C5-198 ◽  
Author(s):  
N. Igata ◽  
H. B. Chen ◽  
K. Miyahara ◽  
T. Uba

Alloy Digest ◽  
2003 ◽  
Vol 52 (2) ◽  

Abstract Carpenter Project 70+ Type 304/304L is a modified version of Type 304/304L stainless steel with improved machinability when compared to conventional 304 (Alloy Digest SS-418, revised September 1997) and 304L (Alloy Digest SS-513, revised November 1997). The alloys are nonhardenable austenitic chromium-nickel steels and are good general-purpose materials for simple and complex parts. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-875. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Sandvik 3R12/4L7 is a composite tube consisting of type 304L stainless steel for corrosion resistance on the outside diameter and having carbon steel (A210 Gr. A1) as the inside component for both water wetted service and the design load. The major application is tubing to handle the corrosive conditions in black liquor recovery boilers. This datasheet provides information on composition, physical properties, microstructure as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-482. Producer or source: Sandvik.


Author(s):  
Dipti Samantaray ◽  
Bommakanti Aashranth ◽  
Neelakandapillai Lekshmanan Parthasarathi ◽  
Arun Kumar Rai ◽  
Marimuthu Arvinth Davinci ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aziz Ahmed ◽  
Seungwoo Han

AbstractN-type bismuth telluride (Bi2Te3) thin films were prepared on an aluminum nitride (AlN)-coated stainless steel foil substrate to obtain optimal thermoelectric performance. The thermal co-evaporation method was adopted so that we could vary the thin film composition, enabling us to investigate the relationship between the film composition, microstructure, crystal preferred orientation and thermoelectric properties. The influence of the substrate temperature was also investigated by synthesizing two sets of thin film samples; in one set the substrate was kept at room temperature (RT) while in the other set the substrate was maintained at a high temperature, of 300 °C, during deposition. The samples deposited at RT were amorphous in the as-deposited state and therefore were annealed at 280 °C to promote crystallization and phase development. The electrical resistivity and Seebeck coefficient were measured and the results were interpreted. Both the transport properties and crystal structure were observed to be strongly affected by non-stoichiometry and the choice of substrate temperature. We observed columnar microstructures with hexagonal grains and a multi-oriented crystal structure for the thin films deposited at high substrate temperatures, whereas highly (00 l) textured thin films with columns consisting of in-plane layers were fabricated from the stoichiometric annealed thin film samples originally synthesized at RT. Special emphasis was placed on examining the nature of tellurium (Te) atom based structural defects and their influence on thin film properties. We report maximum power factor (PF) of 1.35 mW/m K2 for near-stoichiometric film deposited at high substrate temperature, which was the highest among all studied cases.


Sign in / Sign up

Export Citation Format

Share Document