foil substrate
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 4)

Author(s):  
Nur Lili Suraya Ngadiman ◽  
Rozina Abdul Rani ◽  
Siti Rabizah Makhsin ◽  
Muhammad Azmi Ayub ◽  
Mahzaton Aqma Abu Talip ◽  
...  

Author(s):  
Wenwan Zhang ◽  
Yufei Cheng ◽  
Junfeng Zhao ◽  
Qiujie Li ◽  
Jiawei Wang ◽  
...  

Abstract Tin monosulfide (SnS), as a narrow band gap semiconductor for visible-light harvesting, nevertheless the easy formation of secondary phases such as Sn2S3 and SnS2 severely restricts its photoelectrochemical properties. Herein, we proposed a novel two-step strategy to fabricate phase-pure SnS photoelectrode with tunable conductivity on Ti foil substrate and carefully investigated the formation mechanism and photoelectrochemical properties. The tunable conductivity is determined by Na2SO4 pretreatment before annealing, which is supported by the EDS, XPS, and EPR characterizations. Na+ adsorbed to the edge of the precursor SnS2 nanosheets forming a dangling bond adsorption will protect S2- against reacting with the trace oxygen in the CVD system within a certain temperature range (< 525 ℃), thereby reducing the generation of S vacancies to adjust the S/Sn ratio and further regulating the conductivity type. Moreover, the anodic photocurrent density of SnS thin films was about 0.32 mA/cm2 at 1.23 V vs. RHE with the separation and injection efficiency of 1.22 % and 72.78 % and a maximum cathodic photocurrent density can reach approximately -0.36 mA/cm2 at 0 V vs. RHE with the separation and injection efficiency 1.15 % and 5.44 % respectively. The method shown in this work provides an effective approach to control the electrical conductivity of SnS thin films with considerable photocurrent response for phase-pure SnS.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6479 ◽  
Author(s):  
Korbinian Rager ◽  
David Jaworski ◽  
Chresten von der Heide ◽  
Alexander Kyriazis ◽  
Michael Sinapius ◽  
...  

Monitoring process parameters in the manufacture of composite structures is key to ensuring product quality and safety. Ideally, this can be done by sensors that are embedded during production and can remain as devices to monitor structural health. Extremely thin foil-based sensors weaken the finished workpiece very little. Under ideal conditions, the foil substrate bonds with the resin in the autoclaving process, as is the case when polyetherimide is used. Here, we present a temperature sensor as part of an 8 µm thick multi-sensor node foil for monitoring processing conditions during the production and structural health during the lifetime of a construction. A metallic thin film conductor was shaped in the form of a space-filling curve to suppress the influences of resistance changes due to strain, which could otherwise interfere with the measurement of the temperature. FEM simulations as well as experiments confirm that this type of sensor is completely insensitive to the direction of strain and sufficiently insensitive to the amount of strain, so that mechanical strains that can occur in the composite curing process practically do not interfere with the temperature measurement. The temperature sensor is combined with a capacitive sensor for curing monitoring based on impedance measurement and a half-bridge strain gauge sensor element. All three types are made of the same materials and are manufactured together in one process flow. This is the key to cost-effective distributed sensor arrays that can be embedded during production and remain in the workpiece, thus ensuring not only the quality of the initial product but also the operational reliability during the service life of light-weight composite constructions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongha Yoo ◽  
Keundong Lee ◽  
Youngbin Tchoe ◽  
Puspendu Guha ◽  
Asad Ali ◽  
...  

AbstractThis paper describes the fabrication process and characteristics of dimension- and position-controlled gallium nitride (GaN) microstructure arrays grown on graphene films and their quantum structures for use in flexible light-emitting device applications. The characteristics of dimension- and position-controlled growth, which is crucial to fabricate high-performance electronic and optoelectronic devices, were investigated using scanning and transmission electron microscopes and power-dependent photoluminescence spectroscopy measurements. Among the GaN microstructures, GaN microrods exhibited excellent photoluminescence characteristics including room-temperature stimulated emission, which is especially useful for optoelectronic device applications. As one of the device applications of the position-controlled GaN microrod arrays, we fabricated light-emitting diodes (LEDs) by heteroepitaxially growing InxGa1−xN/GaN multiple quantum wells (MQWs) and a p-type GaN layer on the surfaces of GaN microrods and by depositing Ti/Au and Ni/Au metal layers to prepare n-type and p-type ohmic contacts, respectively. Furthermore, the GaN microrod LED arrays were transferred onto Cu foil by using the chemical lift-off method. Even after being transferred onto the flexible Cu foil substrate, the microrod LEDs exhibited strong emission of visible blue light. The proposed method to enable the dimension- and position-controlled growth of GaN microstructures on graphene films can likely be used to fabricate other high-quality flexible inorganic semiconductor devices such as micro-LED displays with an ultrahigh resolution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254023
Author(s):  
Shahrzad Arshadi Rastabi ◽  
Rasoul Sarraf-Mamoory ◽  
Ghadir Razaz ◽  
Nicklas Blomquist ◽  
Magnus Hummelgård ◽  
...  

The cycling performance of supercapacitors sometimes becomes limited when electrode materials slough off during frequent charge–discharge cycles, due to weak bonding between the active material and the current collector. In this work, a flexible graphite foil substrate was successfully used as the current collector for supercapacitor electrodes. Graphite foil substrates were treated in different ways with different acid concentrations and temperatures before being coated with an active material (NiMoO4/nanographite). The electrode treated with HNO3 (65%) and H2SO4 (95%) in a 1:1 ratio at 24°C gave better electrochemical performance than did electrodes treated in other ways. This electrode had capacitances of 441 and 184 Fg–1 at current densities of 0.5 and 10 Ag-1, respectively, with a good rate capability over the current densities of the other treated electrodes. SEM observation of the electrodes revealed that NiMoO4 with a morphology of nanorods 100–120 nm long was properly accommodated on the graphite surface during the charge–discharge process. It also showed that treatment with high-concentration acid created an appropriately porous and rough surface on the graphite, enhancing the adhesion of NiMoO4/nanographite and boosting the electrochemical performance.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110381
Author(s):  
Yebo Lu ◽  
Quan Sun ◽  
Chuncheng Zuo ◽  
Chengli Tang ◽  
Haijun Song ◽  
...  

Silver micro/nanomaterials have attracted a great deal of attention due to their superior physicochemical properties. The atomic migration driven by electromigration or stress-induced migration has been demonstrated to be a promising method for the fabrication of metallic micro-/nanomaterials because of the advantage of simple processing. However, how to realize the controllable fabrication and mass production is still the critical technical problem for the method to be used in large-scale industrial applications. In this paper, the multilayered samples consisted of copper foil substrate, Ti adhesive layer, Ag film, and TiN passivation layer and with arrays of artificial holes on the passivation layer were applied to prepare arrays of Ag micro-particles. For the purpose of controllable fabrication, stress-induced migration experiments combined with finite element simulation were applied to analyze the influence of the passivation layer thickness and the heating temperature on the atom migration and Ag particles growing behavior. And the relationship between size of the fabricated Ag particles and the processing parameters of stress-induced migration experiments were also investigated. As a result, a proper structure size of the multilayered samples and heating temperature were recommended, which can be used for the Ag micro-particles controllable fabrication and mass production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui Deng ◽  
Quanzhen Sun ◽  
Zhiyuan Yang ◽  
Wangyang Li ◽  
Qiong Yan ◽  
...  

AbstractEnvironment-friendly flexible Cu2ZnSn(S,Se)4 (CZTSSe) solar cells show great potentials for indoor photovoltaic market. Indoor lighting is weak and multi-directional, thus the researches of photovoltaic device structures, techniques and performances face new challenges. Here, we design symmetrical bifacial CZTSSe solar cells on flexible Mo-foil substrate to efficiently harvest the indoor energy. Such devices are fabricated by double-sided deposition techniques to ensure bifacial consistency and save cost. We report 9.3% and 9% efficiencies for the front and back sides of the flexible CZTSSe solar cell under the standard sun light. Considering the indoor environment, we verify weak-light response performance of the devices under LED illumination and flexibility properties after thousands of bending. Bifacial CZTSSe solar cells in parallel achieve the superposition of double-sided output current from multi-directional light, significantly enhancing the area utilization rate. The present results and methods are expected to expand indoor photovoltaic applications.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2440
Author(s):  
Seppe Bormans ◽  
Gilles Oudebrouckx ◽  
Patrick Vandormael ◽  
Thijs Vandenryt ◽  
Patrick Wagner ◽  
...  

The study of cell proliferation is of great importance for medical and biological research, as well as for industrial applications. To render the proliferation process accurately over time, real-time cell proliferation assay methods are required. This work presents a novel real-time and label-free approach for monitoring cell proliferation by continuously measuring changes in thermal properties that occur at the sensor interface during the process. The sensor consists of a single planar resistive structure deposited on a thin foil substrate, integrated at the bottom of a cell culture reservoir. During measurement, the structure is excited with square wave current pulses. Meanwhile, the temperature-induced voltage change measured over the structure is used to derive variations in the number of cells at the interface. This principle is demonstrated first by performing cell sedimentation measurements to quantify the presence of cells at the sensor interface in the absence of cell growth. Later, cell proliferation experiments were performed, whereby parameters such as the available nutrient content and the cell starting concentration were modified. Results from these experiments show that the thermal-based sensor is able to accurately measure variations in the number of cells at the interface. Moreover, the influence of the modified parameters could be observed in the obtained proliferation curves. These findings highlight the potential for the presented thermal method to be incorporated in a standardized well plate format for high-throughput monitoring of cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document