scholarly journals A study of the corrosion of stainless steel 304L coated with a 190 nm-thick manganese layer and annealed with nitrogen flux in a 0.4-mole solution of H2SO4 at different temperatures

2019 ◽  
Vol 14 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Farzaneh Modiri ◽  
Hadi Savaloni
Author(s):  
paola baia ◽  
Diego Jorge Alves Borges ◽  
Danyella Crystyane Silva Cardoso ◽  
Victor Ferreira ◽  
Paulo Assunção ◽  
...  

2020 ◽  
Vol 62 (10) ◽  
pp. 993-997
Author(s):  
Kanrayaphus Tipves ◽  
Gobboon Lothongkum ◽  
Anchaleeporn Waritswat Lothongkum

2012 ◽  
Vol 159 ◽  
pp. 346-350
Author(s):  
Shu Min Liu ◽  
Jian Bin Zhang

The elevated temperature short-time tensile test with the sample of casting low nickel stainless steel was conducted on SHIMADZU AG-10 at ten temperatures 300, 500, 600, 700, 800, 950, 1000, 1050, 1100, and 1250°C, respectively. The stress-strain curves with the thermal deformation at the different temperatures, the peak stress intensity-temperature curve, and the reduction percentage of cross sectional area-temperature curve were obtained. Metallographic test samples were prepared and the morphology of deforming zone was observed by optical microscopy. The experimental results show that the tensile strength of the test samples decreases with increasing temperature. From 300 to 800°C, the work harding occurred and the tensile strength increases with increasing strain. The work softening occurred and the tensile strength decreases with increasing strain at temperatures of 800 to 1250°C. The minimum value of reduction percentage was measured at 800 °C. The austenite and delta-ferrite are the main phase in the tested samples. When the tensile temperatures are increased to 1200°C, the delta-ferrite became thinner and broke down to be spheroidized.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui

The inhibition behavior of carbon nanotubes (CNTs) and Gum Arabic (GA) on the corrosion of 316L stainless steel in CNTs–water nanofluid under the effect of different temperatures was investigated by electrochemical methods and surface analysis techniques. Thereby, 316L stainless steel samples were exposed to CNTs–water nanofluid under temperatures of 22, 40, 60 and 80 °C. Two concentrations of the CNTs (0.1 and 1.0 wt.% CNTs) were homogenously dispersed in deionized water using the surfactant GA and tested using three corrosion tests conducted in series: open circuit test, polarization resistance test, and potentiodynamic scans. These tests were also conducted on the same steel but in solutions of GA-deionized water only. Tests revealed that corrosion increases with temperature and concentration of the CNTs–water nanofluids, having the highest corrosion rate of 32.66 milli-mpy (milli-mil per year) for the 1.0 wt.% CNT nanofluid at 80 °C. In addition, SEM observations showed pits formation around areas of accumulated CNTs that added extra roughness to the steel sample. The activation energy analysis and optical surface observations have revealed that CNTs can desorb at higher temperatures, which makes the surface more vulnerable to corrosion attack.


2012 ◽  
Vol 32 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Danila Soares Caixeta ◽  
Thiago Henrique Scarpa ◽  
Danilo Florisvaldo Brugnera ◽  
Dieyckson Osvani Freire ◽  
Eduardo Alves ◽  
...  

The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7110
Author(s):  
Yanbin Pei ◽  
Xuanhui Qu ◽  
Qilu Ge ◽  
Tiejun Wang

Borated stainless steel (BSS) specimens have a boron content of 1.86 wt%, and are prepared by hot isostatic pressing (HIP) conducted at different temperatures, ranging from 1000 to 1100 °C and a constant true strain rate (0.01, 0.1, 1 and 10 s−1). These tests, with observations and microstructural analysis, have achieved the hot deformation characteristics and mechanisms of BSS. In this research, the activation energy (Q) and Zener–Hollomon parameter (Z) were contrasted against the flow curves: Q = 442.35 kJ/mol. The critical conditions associated with the initiation of dynamic recrystallization (DRX) for BSS were precisely calculated based on the function between the strain hardening rate with the flow stress: at different temperatures from 1000 to 1100 °C: the critical stresses were 146.69–254.77 MPa and the critical strains were 0.022–0.044. The facts show that the boron-containing phase of BSS prevented the onset of DRX, despite the saturated boron in the austenite initiated DRX. The microstructural analysis showed that hot deformation promoted the generation of borides, which differed from the initial microstructure of HIP. The inhomogeneous distribution of elements in the boron-containing phase was caused by hot compression.


Sign in / Sign up

Export Citation Format

Share Document