Real-time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing

Author(s):  
Jiankang Huang ◽  
Zhuoxuan Li ◽  
Shurong Yu ◽  
Xiaoquan Yu ◽  
Ding Fan
2021 ◽  
Author(s):  
Mitsugu Yamaguchi ◽  
Rikiya Komata ◽  
Tatsuaki Furumoto ◽  
Satoshi Abe ◽  
Akira Hosokawa

Abstract Wire arc additive manufacturing (WAAM) is advantageous for fabricating large-scale metallic components, however, a high geometric accuracy as that of other AM techniques cannot be achieved because of the deposition process with a large layer. This study focuses on the WAAM process based on gas metal arc welding (GMAW). To clarify the influence of shielding gas used to protect a molten metal during fabrication on the geometric accuracy of the built part obtained via the GMAW-based WAAM process, the influence of the metal transfer behavior on the geometry and surface roughness of the fabricated structures was investigated via visualization using a high-speed camera when single and multilayer depositions were performed under different heat inputs and gases. However, when using Ar gas, the heat flux from an arc to the workpiece is relatively low, limiting the depth of the molten pool during welding. The effect of its characteristics on the stair steps that are inevitably produced on the side face of the multilayer structure in the WAAM process was verified, and for a heat input of 1.17 kJ/cm under Ar gas, a higher geometric accuracy of the multilayer structure was obtained without interlayer cooling. The short circuit between the metal droplet and the fabricated surface, where the molten pool is insufficiently formed, resulted in a hump formation. Further, the metal transfer under Ar gas reduced the surface irregularities on the fabricated structure.


Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


1997 ◽  
Vol 491 (2) ◽  
pp. 436-450 ◽  
Author(s):  
C. Alcock ◽  
W. H. Allen ◽  
R. A. Allsman ◽  
D. Alves ◽  
T. S. Axelrod ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jiaqi Zhou ◽  
Chaoxiong He ◽  
Ming-Ming Liu ◽  
Enliang Wang ◽  
Shaokui Jia ◽  
...  

2021 ◽  
pp. 103786
Author(s):  
Dongdong Han ◽  
Yijie Wang ◽  
Zhanqiang Hui ◽  
Zhixing Zhang ◽  
Kaili Ren ◽  
...  

2012 ◽  
Vol 100 (19) ◽  
pp. 193702 ◽  
Author(s):  
Mikio Kato ◽  
Walter Meissl ◽  
Kenji Umezawa ◽  
Tokihiro Ikeda ◽  
Yasunori Yamazaki

2013 ◽  
Vol 102 (7) ◽  
pp. 072405 ◽  
Author(s):  
Kunihiro Nakano ◽  
Kenji Tanabe ◽  
Ryo Hiramatsu ◽  
Daichi Chiba ◽  
Norikazu Ohshima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document